chứng minh rằng:1/2! + 2/3! + 3/4! + ..... + 2016/2017!
Chứng minh rằng F= 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+5+6+...+2017)<2016/2017
cho P=1^2017 +2 ^2017 + ... + 2016^2017 ; Q = 1+2+3+...+2016. Chứng minh rằng P chia hết cho Q
ngu người bài này mà không biết giải
Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi
Cho P= 1^2017+2^2017+3^2017+...+2016^2017, Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
sử dụng đồng dư thức hoặc hằng đẳng thức
cho p/q là phân số tối giản thỏa mãn: p/q = 1/2! + 2/3! + 3/4! + ....+ 2016/2017! chứng minh rằng q chia hết cho 2017
cho p/q là phân số tối giản thỏa mãn: p/q = 1/2! + 2/3! + 3/4! + ....+ 2016/2017! chứng minh rằng q chia hết cho 2017
cho A=1/2*3/4*5/6.....*2015/2016.chứng minh rằng A2<-/2017
cho p/q là phân số tối giản thỏa mãn: p/q = 1/2! + 2/3! + 3/4! + ....+ 2016/2017!
Chứng minh rằng q chia hết cho 2017
Chứng minh rằng A=\(\left(4+4^2+4^3+...+4^{2016}\right)⋮21;420\)
A=\(\left(2016+2016^2+2016^3+...+2016^{2016}\right)⋮2017\)
Cho B=1/3+1/3^2+1/3^3+1/3^4+...+1/3^2016+1/3^2017.
Chứng minh rằng B<1/2
Giúp minh nhé . Mình cảm ơn !
Bài làm:
Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)
=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)
<=> \(2B=1-\frac{1}{3^{2017}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)
=> \(B< \frac{1}{2}\)