a) tìm \(\in\)N để a+1 là bội của a-1
b) cho K= \(10^{28}\) .Chứng minh rằng K chia hết cho 72
a) tìm a thuộc N để a + 1 là bội của a - 1
b) cho K = 1028 + 8. chứng minh rằng K chia hết cho 72
1 Tìm x thuộc N để
a n^10+1 chia hết cho 10
b n^2+n+2 chia hết cho 5
2 Chứng minh
10^28+8 chia hết cho 72
1.cho A = 999993^1999 - 555557^1997.chứng minh rằng A chia hết cho 5
2.chứng minh rằng 10^28+8 chia hết cho 72
1) Tìm x thuộc N để A, B chia hết cho 2 :
A = 18 + 8 + 12 + x
B = 76 + 9 + x
2) Cho a thuộc N biết a Chia hết cho 12 dư 8. Hỏi a có chia hết cho 4 và 6 không ?
3) Chứng minh rằng :
a, 10^28 + 8 chia hết cho 72
b, 8^8 + 2^20 chia hết cho 1
6) Cho A= 2 + 2^2 + 2^3 + ........ + 2^60
Chứng minh A chia hết cho 3, 7, 15
Tìm số nguyên tố a để (2a+1) là số nguyên tố nhỏ hơn 47
Chứng tỏ rằng nếu k chia hết cho 4 thì ( 28+ 17.k) chia hết cho 4
Giải :
k chia hết cho 4 => 17k chia hết cho 4 (1)
28 chia hết cho 4 (2)
Từ (1) ; (2) => 28 + 17k chia hết cho 4
Chứng minh rằng:
a)10^28 + 8 chia hết cho 72
b)8^8+2^20 chia hết cho 17
c)10^n+18n+1chia hết cho 27
d)10^n +72n -1 chia hết cho 81
d) \(10^n+72n-1\)\(=100...0-1+72n\)
=\(999...9-9n+81n\)
n chữ số 9
=\(9.\left(111...1-n\right)+81n\)
VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9
mà 81n chia hết 9 => 10n + 72n -1 chia hết 9
b) \(10^n+18n-1\)
<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)
n
<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)
n
<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)
n
<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)
<=> \(9.9k+27n\)chia hết \(27\)
<=> \(81k+27n\)chia hết \(27\)
a) \(10^{28}+8\)chia hết cho 72
\(\Rightarrow10^{28}:9\)dư 1
\(\Rightarrow8:9\)dư 8
\(\Rightarrow1+8=9\)chia hết cho 9
\(\Rightarrow10^{28}+8\)chia hết cho 9 ( 1 )
\(10^{28}\)chia hết cho 8 ( vì 3 sớ tận cùng là 000 chia hết cho 8 )
8 chia hết cho 8
\(\Rightarrow10^{28}+8\)chia hết cho 8 ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với UCLN ( 8 ; 9 ) = 1 => ĐPCM
b) \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)chia hết cho 7 => ĐPCM
c) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
d
a. Chứng minh rằng nếu: (ab + cd + eg) chia hết cho 11 thì abcdeg chia hết cho 11
b. Chứng minh rằng: 10^28 + 8 chia hết cho 72
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
Có gì đâu, câu nào khó cứ hỏi mk nhé, các bn bảo mk vẫn giỏi Toán mà.
Câu 1 : Tìm x biết
( x + 1 ) + ( x + 2 ) + ......... + ( x + 100 ) = 5750
Câu 2 :
a) Chứng minh rằng nếu : ( ab + cd + eg )chia hết cho 11 thì abcdeg chia hết cho 11
b) Chứng minh rằng : 10^28 + 8 chia hết cho 72
câu 1
(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+3+...+99+100)=5750 (có 100 số x và từ 1 -100 có 100 số)
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=700
x=7
vậy........
câu 2
a)ta có
abcdeg=ab.10000+cd.100+eg
=9999.4b+99cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
ta thấy 9999ab+99cd\(⋮\)11 và ab+cd+eg cn vậy...
=>....
vậy...
b)ta có 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8 (=10^28)
=>10^28+8 chia hết cho 28 (1)
ta có 10^28+8=10...08(27 cs 0)
=>10^28+8\(⋮\)9(2)
vì ưCLN(8;9)=1 (3)
từ (1)(2)(3) suy ra 10^28+8 chia hết cho 72
vậy.....
Mik nói thật nhé lũ CTV OLM n g u như c a k ấy
Cho số tự nhiên ab bằng 3 lần tích các chữ số của nó
chứng minh rằng b chia hết cho a
giả sử b = ka (k thuộc N) chứng minh rằng k là Ư(10)
tìm các chữ số ab nói trên
10a + b = 3. a. b (*)
Cho số tự nhiên ab bằng ba lần tích các chữ số của nó nên số tự nhiên ab chia hết cho a; mà 10a cũng chia hết cho a nên để 10a + b chia hết cho a thì b cũng phải chia hết cho a => b chia hết cho a
Thay b = ka vào (*) ta được:
10a + ka = 3aka
<=> a . ( 10 + k ) = 3aka
<=> 10 + k = 3ak (* *)
=> 10 + k chia hết cho k
Vì k chia hết cho k nên để 10 + k chia hết cho k thì 10 chia hết cho k
=> k là Ư(10)
k là Ư(10), k ∈ N nên k ∈ { 1, 2, 5 }
Thay k vào (**) ta được hai trường hợp: a = 2 và b = 4 và a = 1 và b = 5
Vậy số ab trên là 24 và 15