A=2/1.3+2/3.5+2/3.7+....+2/2021.2023
=)
B=1/2.5+1/5.8+1/8.11+...+1/95.98
a)1+1/1.3+1/3.5+...+1/99.101
b)1/2+1/2.5+1/5.8+1/8.11+...+1/98.101
a) đặt
\(S=1+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\\ 2S=2+\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\\ 2S=2+\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ 2S=2+1-\dfrac{1}{101}\\ 2S=\dfrac{302}{101}\\ S=\dfrac{151}{101}\)
b)
đặt
\(S=\dfrac{1}{2}+\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{98}-\dfrac{1}{101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{101}\\ 3S=\dfrac{201}{101}\\ S=\dfrac{67}{101}\)
\(2A-1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(2A-1=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(2A=\dfrac{201}{101}\Rightarrow A=\dfrac{201}{202}\)
A=1/2.5+1/5.8+1/8.11+...+1/92.95+1/95.98
3A = \(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\)
3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)
3A=\(\frac{1}{2}-\frac{1}{98}\)
3A=\(\frac{98}{196}-\frac{2}{196}\)=\(\frac{96}{196}=\frac{24}{49}\)
A=\(\frac{24}{49}:3=\frac{24}{49}.\frac{1}{3}=\frac{8}{49}\)
Vậy A = \(\frac{8}{49}\)
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)
\(\Rightarrow3A=3\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\right)\)
\(\Rightarrow3A=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{98}\)
\(\Rightarrow3A=\frac{24}{49}\)
\(\Rightarrow A=\frac{24}{49}:3\)
\(\Rightarrow A=\frac{8}{49}\)
Vậy \(A=\frac{8}{49}\)
\(A=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=3.\frac{24}{49}\)
\(=\frac{72}{49}\)
\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)
\(X=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{99^2}{98.100}\)
\(K=\dfrac{1}{3}.\dfrac{1}{15}.\dfrac{1}{35}...\dfrac{1}{9999}\)
\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\dfrac{96}{505}\)
\(\Rightarrow G=\dfrac{64}{505}\)
\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\\ G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\\ G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\\ G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\\ G=\dfrac{2}{3}.\left(\dfrac{101}{505}-\dfrac{5}{505}\right)\\ G=\dfrac{2}{3}.\dfrac{96}{505}\\ G=\dfrac{64}{505}\)
A=1/2.5+1/5.8+1/8.11+......+1/92.95+1/95.98
Áp dụng ct : 1/n.(n+1) = 1/n - 1/n+1
Ta có : A = 1/2.5 + 1/5.8 + ...+1/95.98
A = 1/2 - 1/5 + 1/5 - 1/8 +...+ 1/95 - 1/98
A = 1/2 - 1/98
A = 24/49
k mk nha bn
= 1/3 . (1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98)
= 1/3 . (1/2 - 1/5 + 1/5 - 1/8 + 1/11 - ... + 1/92 - 1/95)
= 1/3 . (1/2 - 1/95)
= 1/3 . 93/190
= 31/190
tớ chắc nha nguten duc huy
công chúa ánh trăng tim cậu bỏ 1/92.95 đi đâu vậy
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}+\dfrac{1}{95.98}\)
\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot98}\)
\(A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{2}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{92}+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\)
\(A=\dfrac{1}{2}-\dfrac{1}{98}\)
\(A=\dfrac{49}{98}-\dfrac{1}{98}\)
\(A=\dfrac{48}{98}\)
\(A=\dfrac{24}{49}\)
Giải thích các bước giải:
A =1/2.5 + 1/5.8 + 1/8.11 + … +1/92.95 + 1/95.98
=1/3 . (1/2-1/5+1/5-1/8+1/8-1/11+…+1/92-1/95+1/95-1/98)
=1/3 . (1/2 – 1/98 )
=1/3 . 24/49
=8/49`
vậy `A=8/49`
A=1/2.5+1/5.8+1/8.11+.....+1/92.95+1/95.98
A=?
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)
\(=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=3.\frac{24}{49}\)
\(=\frac{72}{49}\)
mk lm sai các bn đừng tk sai nha! xin m.n đó, mk chỉ chưa đọc kĩ đề thôi nha!
A= 1/2.5+1/5.8+1/8.11+...+1/92.95+1/95.98.
Tính tổng A
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{95}-\frac{1}{98}\)
\(=\frac{1}{2}-\frac{1}{98}\)tự làm tiếp
1/2.5+1/5.8+1/8.11+....+1/92.95+1/95.98
Tìm A :
A=1/2.5+1/5.8+1/8.11+............+1/92.95+1/95.98
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{92.95}+\frac{1}{95.99}\)
\(A=\frac{1}{3}\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{92}+\frac{1}{95}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)
Bạn tự bấm máy tính là ra