so sanh A va B biet
A=\(\frac{10^{2006}+1}{10^{2007}+1}\)
B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
so sanh A B biet A=\(\frac{10^{2018}+1}{10^{2017}+1}\);B=\(\frac{10^{2007}+1}{10^{2008+1}}\)
Ta có: \(10^{2018}>10^{2017}\Rightarrow10^{2018}+1>10^{2017}+1\Rightarrow A=\frac{10^{2018}+1}{10^{2017}+1}>1\) (1)
\(10^{2007}< 10^{2008}\Rightarrow10^{2007}+1< 10^{2008}+1\Rightarrow B=\frac{10^{2007}+1}{10^{2008}+1}< 1\) (2)
Từ (1) và (2) => A > B
so sánh A và B
\(A=\frac{10^{2006}+1}{10^{2007}+1}\) \(B=\frac{10^{2007}+1}{10^{2008}+1}\)
So sánh A và B biết
A=\(\frac{10^{2006}+1}{10^{2007}+1}\);B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
so sánh
A=\(\frac{10^{2006}+1}{10^{2007}+1}\)và B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
HEPL ME TO
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)(\(a;b;m\in\)N*)
Ta có:
\(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)
\(B< \frac{10^{2007}+10}{10^{2008}+10}\)
\(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)
\(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)
=> \(B< A\)
A=\(\frac{10^{2006}+1}{10^{2007}+1}\) và B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
\(A=\frac{10^{2006}+1}{10^{2007}+1}=\frac{10^{2006}+1}{\left(10^{2006}+1\right).10}=\frac{1}{10}\)
\(B=\frac{10^{2007}+1}{10^{2008}+1}=\frac{10^{2007}+1}{\left(10^{2007}+1\right).10}=\frac{1}{10}\)
Nếu đề bài là so sách thì A = B
So sanh A va B biet : A=2006/2007+2007/2008+2008/2009 va B=(2006+2007+2008)/(2007+2008+2009)
A>b
Cách làm: Bạn tách |B ra rồi so sánh với từng ps ở A, sau đó Kết luận
so sánh A và B
\(A=\frac{10^{2006}+1}{10^{2007}+1}\) \(B=\frac{10^{2007}+1}{10^{2008}+1}\)
A=\(\frac{10^{2006}+1}{10^{2007}+1}\) và B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
Hãy so sánh A và B
\(1-A=\frac{10^{2007}-10^{2006}}{10^{2007}+1}=\frac{9.10^{2006}}{10^{2007}+1}=\frac{9.2^{2007}}{10^{2008}+10}\)
\(1-B=\frac{10^{2008}-10^{2007}}{10^{2008}+1}=\frac{9.10^{2007}}{10^{2008}+1}\)
=>1-A< 1-B
=> A > B
so sánh A và B biết
\(A=\frac{10^{2006}+1}{10^{2007}+1}\)
B =\(\frac{10^{2007}+1}{10^{2008}+1}\)
Ai NhaNh MìnH Tick ChO
\(10A=\frac{10^{2006}+10}{10^{2007}+1}\)
\(10B=\frac{10^{2007}+10}{10^{2008}+1}\)
\(10A=1\frac{9}{10^{2007}+1}\)
\(10B=1\frac{9}{10^{2008}+1}\)
Vì \(\frac{9}{10^{2007}+1}\) > \(\frac{9}{10^{2008}+1}\) ==> a > b
K NHA