Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Mai Chi
Xem chi tiết
lindd
Xem chi tiết
Hàanh Nguyễn
Xem chi tiết
Laku
10 tháng 7 2021 lúc 9:35

undefined

Fairy Tail
Xem chi tiết
Huỳnh Diệu Bảo
2 tháng 5 2017 lúc 9:40

\(y=\sqrt{x-1}+\sqrt{9-x}\)(đk: \(9\ge x\ge1\))
=> \(y\ge\sqrt{x-1+9-x}=\sqrt{8}\)
Dấu "=" xảy ra khi x =1 hoặc x= 9 

Vậy y min  = \(\sqrt{8}\)khi x =1 hoặc x = 9

Đoàn Phạm Dũng
Xem chi tiết
Nguyễn Duy Thái
Xem chi tiết
An Thy
14 tháng 7 2021 lúc 19:36

mình nghĩ bài này chắc phải có điều kiện \(x>1\),còn không thì mình cũng không biết làm thế nào\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=\sqrt{x}+2+\dfrac{3}{\sqrt{x}-1}\)

\(=\sqrt{x}-1+\dfrac{3}{\sqrt{x}-1}+3\ge3+2\sqrt{\left(\sqrt{x}-1\right).\dfrac{3}{\sqrt{x}-1}}=3+2\sqrt{3}\)

\(\Rightarrow P_{min}=3+2\sqrt{3}\) khi \(\left(\sqrt{x}-1\right)^2=3\Rightarrow\sqrt{x}-1=\sqrt{3}\left(\sqrt{x}-1>0\right)\)

\(\Rightarrow x=\left(1+\sqrt{3}\right)^2=4+2\sqrt{3}\)

Nguyễn Việt Lâm
14 tháng 7 2021 lúc 19:37

Nếu biểu thức là \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\) thì biểu thức này ko tồn tại GTNN

Nó chỉ tồn tại GTNN khi có thêm điều kiện \(x>1\)

Linh Đan
Xem chi tiết
Phung Ngoc Tam
Xem chi tiết
Vĩnh Thụy
Xem chi tiết
Thảo
1 tháng 9 2016 lúc 8:50

bạn bấm mấy tính là đc chứ j

**** nha bn

**** nha

Giang Hồ Đại Ca
1 tháng 9 2016 lúc 8:57

A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1 

Tức là : 

\(\sqrt{244}\)và \(\sqrt{4}\)

tất nhiên ........

B = căn bậc hai của 196 - 1/căn bậc hai của 6 

Tất nhiên ......

2) Tìm GTNN của A = 2 + căn bậc hai của x 

\(A=2+\sqrt{x}\)

\(\sqrt{x+2}\)

3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1 

\(B=5-2.\sqrt{x-1}\)

\(4-2\sqrt{x}\)