tim x biet\(\sqrt{x-7}\)=x-1
tim x biet
\(\sqrt{x-7}=x-1\)
mk dg can gap, ai giai ki gium mk nha
Tim x,y biet ;\(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
ĐKXĐ : \(x\ge0;y\ge1\)
\(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
\(\Leftrightarrow x-4\sqrt{x}+4+y-1-6\sqrt{y-1}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{y-1}-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=10\end{cases}}}\)
tim x biet: \(\sqrt{\dfrac{x+1}{x-1}}\)=2
ĐK : \(x>1\) hoặc \(x\le-1\)
Ta có : \(\sqrt{\dfrac{x+1}{x-1}}=2\)
\(\Leftrightarrow\dfrac{x+1}{x-1}=4\)
\(\Leftrightarrow x+1=4x-4\)
\(\Leftrightarrow-3x=-5\)
\(\Leftrightarrow x=\dfrac{5}{3}\) ( Thỏa mãn )
Vậy \(x=\dfrac{5}{3}\)
Chúc bạn học tốt ...
ĐKXĐ x - 1 >0 <=> x>1
<=> \(\dfrac{x+1}{x-1}\) = 4 (bình phương cả 2 vế)
<=> x + 1 = 4x - 4
<=> x - 4x = - 4 -1
<=> -3x = -5
<=> x = 5/3 (TM)
tim x biet \(\sqrt{x-1}\)+1=x
ĐKXĐ \(x\ge1\)
\(\Rightarrow\sqrt{x-1}=x-1\)
\(\Rightarrow x-1=x^2-2x+1\)
\(\Rightarrow x^2-3x+2=0\)
\(\Rightarrow x^2-x-2x+2=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\) (nhận)
hoặc \(x-2=0\Rightarrow x=2\) (nhận)
Vậy x = 1 ; x = 2
\(\sqrt{x-1}+1=x\)
=>\(\sqrt{x-1}=x-1\)
=>\(x-1-\sqrt{x-1}=0\)
=>\(\sqrt{x-1}.\left(\sqrt{x-1}-1\right)=0\)
=>\(\sqrt{x-1}=0=>x-1=0=>x=1\)
hoặc \(\sqrt{x-1}-1=0=>\sqrt{x-1}=1=>x-1=1=>x=2\)
Vậy x=1,2
tim x biet
\(x-2\sqrt{x}-1=0\)
ĐKXĐ: \(x\ge0\)
Đặt \(\sqrt{x}=a\)
\(\Rightarrow a^2-2a-1=0\)
\(\Rightarrow\left(a-1\right)^2=2\)
\(\Rightarrow\orbr{\begin{cases}a-1=\sqrt{2}\\a-1=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}a=\sqrt{2}+1\\a=-\sqrt{2}+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}\sqrt{x}=\sqrt{2}+1\\\sqrt{x}=-\sqrt{2}+1< 0\left(v\text{ô}l\text{ý}\right)\end{cases}}}\Leftrightarrow x=\left(\sqrt{2}+1\right)^2=3+2.\sqrt{2}\)Vậy \(x=3+2.\sqrt{2}\)
P/S: Không chắc lắm
Tim x,y,z biet: \(\dfrac{1}{2}\left(x+y+z\right)-3=\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-4}\)
ĐK : \(x\ge2,y\ge3,z\ge4\) .
\(pt\Leftrightarrow x+y+z-6=2\sqrt{x-2}+2\sqrt{y-3}+2\sqrt{z-4}\)
\(\Leftrightarrow\left[\left(x-2\right)-2\sqrt{x-2}+1\right]+\left[\left(y-3\right)-2\sqrt{y-3}+1\right]+\left[\left(z-4\right)-2\sqrt{z-4}+1\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-4}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(TM\right)\)
tim x biet (x+1) + (x+4)+(x+7)+...+(x+28) = 156
( x + 1 ) + ( x + 4 ) + ( x + 7 ) +...+ ( x + 28 ) = 156
( x + x + x +...+ x ) + ( 1 + 4 + 7 +...+28 ) = 156
Đặt ( 1 + 4 + 7 +...+ 28 ) là A
Số số hạng của A là :
( 28 - 1 ) : 3 + 1 = 10 ( số )
Tổng của A là :
( 28 + 1 ) x 10 : 2 = 145
10x + 145 = 156
10x = 156 - 145
10x = 11
x = 1,1
tim x biet \(x=\sqrt{x}\)
\(x=\sqrt{x}\Leftrightarrow x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy x=0 và x=1 là giá trị cần tìm
tim gia tri tuyet doi cua x biet: a)x=-1/7 b)x=1/7