Giúp mình với :)) Cảm ơn tr :))
Cho tam giác ABC đều với trung tuyến AD, BE, CF và trọng tâm G. Phân giác của góc BED cắt tia CF, AD và BC lần lượt ở M,N và P. CMR:EN=PM.
Cho tam giác đều ABC cạnh a, các đường trung tuyến AD,BE,CF cắt nhau tại G.
a) Tính tổng S = GA^2 + GB^2 +GC^2 theo a
b) Tia phân giác góc BED cắt các đoạn thẳng CG,AD,BC lần lượt tại cá điểm M,N,P. Chứng minh rằng EN= PM
c) Cho điểm T bất kỳ trong tam giác ABC. Gọi I,K,L lần lượt là hình chiếu vuông góc của điểm T trên AD,BE,CF. CMR giá trị của tổng AI + BK + CL không thay đổi khi T di chuyển trong tam giác ABC
nhanhCho tam giác đều ABC cạnh a, các đường trung tuyến AD,BE,CF cắt nhau tại G. a) Tính tổng S = GA^2 GB^2 GC^2 theo a b) Tia phân giác góc BED cắt các đoạn thẳng CG,AD,BC lần lượt tại cá điểm M,N,P. Chứng minh rằng EN= PM c) Cho điểm T bất kỳ trong tam giác ABC. Gọi I,K,L lần lượt là hình chiếu vuông góc của điểm T trên AD,BE,CF. CMR giá trị của tổng AI BK CL không thay đổi khi T di chuyển trong tam giác ABC
Cho tam giác nhọn ABC, đường cao AD cắt trung tuyến BE và phân giác CF lần lượt tại M và N, BE cát CF ở P. Chứng minh tam giác MNP không phải tam giác đều.
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
Bài 1 Cho tam giác ABC có hai đường trung tuyến BE và CF cắt nhau tại G.Chứng minh G là trọng tâm của tam giác ABC.(GỢI Ý Trọng tâm là điểm chung của ba đường trung tuyến nên trọng tâm là điểm chung của ...)
BÀI 2 Cho tam giác ABC có đường trung tuyến AD VÀ trọng tâm G.Đã biết GA=2/3 AD.hãy chứng minh GA=2GD,AD=3GD.
HELP ME,GIÚP M VỚI MÌNH SẼ LIKE ,MÌNH ĐANG CẦN RẤT GẤP
hông biết
Giúp mình !!!!!!!!
1. Tam giác ABC với D,E,F lần lượt thuộc cạnh BC,CA,AB sao cho AD,BE,CF đồng quy tại M. chứng minh \(\frac{DM}{AD}+\frac{FM}{CF}+\frac{EM}{BE}=1\)
2. Tam giác ABC với M tùy ý nằm trong tam giác. Đường thẳng đi qua M và trọng tâm G của tam giác cắt BC,CA,AB lần lượt tại A',B',C'. chứng minh: \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
3. Tam giác nhọn ABC, phân giác AD. M,N lần lượt là hình chiếu của D trên AC,AB, P là giao điểm BM, CN. chứng minh AP vuông góc BC
Cho tam giác đều ABC có ba đường trung tuyến là AD,BE,CF. Gọi G là trọng tâm của tam giác.
a.Chứng minh AD vuông góc BC, BE vuông góc AC, CF vuông góc AB.
b.chứng minh GA=GB=GC.
c.chứng minh AD=BE=CF
Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt tại H. Qua A vẽ đường thẳng song song với BE,CF lần lượt cắt CF,BE tại P và Q. Chứng minh: PQ vuông góc với trung tuyến AM của tam giác ABC
2 + 2 chắc chắn sẽ bằng 5
Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt tại H. Qua A vẽ đường thẳng song song với BE,CF lần lượt cắt CF,BE tại P và Q. Chứng minh: PQ vuông góc với trung tuyến AM của tam giác ABC