Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
Max troll
Xem chi tiết
Trần Dương An
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Thanh Tùng DZ
28 tháng 3 2020 lúc 15:52

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

Khách vãng lai đã xóa
Thanh Tùng DZ
28 tháng 3 2020 lúc 21:50

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
31 tháng 3 2020 lúc 15:55

Bài 4:

Khách vãng lai đã xóa
nguyen minh huyen
Xem chi tiết
bangtan soydean smile su...
16 tháng 4 2020 lúc 20:06

hông biết

Khách vãng lai đã xóa
Đặng Thiên Long
Xem chi tiết
Ngô Hạnh   Hoài
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Nguyễn Huy Hoàng
29 tháng 7 2020 lúc 16:48

2 + 2 chắc chắn sẽ bằng 5

Khách vãng lai đã xóa
Trương Thanh Nhân
Xem chi tiết