Các bạn giúp mình giải câu này nhé
Chứng minh rằng 1/2.3+1/4.5+1/6.7...+1/98.99+1/100.101
Chứng minh rằng 1/2.3+1/4.5+1/6.7+...+1/98.99+1/100.101<1/2
tự làm đi 1/2.3+1/4.5+...+1/100.101. không thể khử liên tiếp được thì làm bằng niềm tin.
Chứng minh rằng 1/2.3+1/4.5+1/6.7+...+1/98.99+1/100.101 > 1/2
Chứng minh rằng:
\(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{100.101}< \frac{1}{2}\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A< \left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\right)+\left(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{101}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Vậy \(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}< 2\) (đpcm)
Mai ơi, bài này thầy dạy hôm chiều cậu nghỉ đó
1) A= 1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
2) B=1/5.6+1/6.7+1/7.8+.....+1/23.24+1/24.25
3) C=1/1.2+1/2.3+1/3.4.....+1/98.99+1/99.100
GIẢI NHANH GIÚP MIK VỚI Ạ, MIK ĐANG CẦN GẤP, BẠN NÀO GIẢI XONG TRƯỚC THÌ CHO MIK CẢM ƠN NHA
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9
các câu 2;3 còn lại giống câu 1 bạn nhé
bạn thay số vào rồi làm tương tự
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9.
A,Cho S=1/2.3/4.5/6.7/8...99/100
chứng minh rằng S<0,01
b,cho A=1/2.3/4.5/6.7/8...79/80 Chứng minh rằng A<1/9
Câu 1: Cho các số 5;6;7;8;9;......;15;16;17. Chứng minh rằng tổng ngịch đảo của các số trên nhỏ hơn 2,
Câu 2; Cho B= 1/2.3/4.5/6.7/8.9/10....99/100. Chứng tỏ rằng: B<1/10.
tính nhanh :
a) 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/98.99 + 1/99.100
b) 201.204+1/204.203-407
CÁM ƠN !
a)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
b)\(=\frac{201.204+1}{\left(201+2\right).204-407}\)
\(=\frac{201.204+1}{201.204+2.204-407}\)
\(=\frac{201.204+1}{201.204+1}\)
=1
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
a, \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Tính nhanh:
\(\frac{1.98+2.97+3.96+.....+98.1}{1.2+2.3+3.4+4.5+....+98.99}\)
Các bạn giúp mình giải bài này với .Viết rõ lời giải ra hộ mình na
Ta có : 1.98 + 2.97 + 3.96 + ...+ 98.1 = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + .....+ ( 1 + 2 + 3 + ...+ 97 + 98 ) = \(\frac{1.2}{2}\)+ \(\frac{2.3}{2}\)+ \(\frac{3.4}{2}\)+ ...+ \(\frac{98.99}{2}\)= \(\frac{1}{2}\)( 1 . 2 + 2 . 3 + 3 . 4 +...+ 98 . 99).
Vậy A = \(\frac{1}{2}\)
Nè bạn giải cụ thể chi tiết cho mình đk k thì mình mới k cho đk
CHO C= 2.3+4.5+6.7+....+ 100.101
TÍNH C
GIẢI LẬP LUẬN NHA
Bạn kham khảo tại link này nhé.
Câu hỏi của Lê Ngọc Hà Anh - Toán lớp 6 - Học toán với OnlineMath