Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oanh Ha ngọc
Xem chi tiết
phan thanh hoa
9 tháng 4 2017 lúc 9:57

tu lam di

dang2011
21 tháng 4 2023 lúc 22:41

tự làm đi 1/2.3+1/4.5+...+1/100.101. không thể khử liên tiếp được thì làm bằng niềm tin.

Oanh Ha ngọc
Xem chi tiết
Nguyen Thi Mai
Xem chi tiết
Phạm Tuấn Kiệt
30 tháng 4 2016 lúc 13:00

Đặt \(A=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A< \left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\right)+\left(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{101}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy \(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}< 2\) (đpcm)

Phạm Thị Thanh Thủy
30 tháng 4 2016 lúc 18:09

Mai ơi, bài này thầy dạy hôm chiều cậu nghỉ đóoaoa

Nguyễn Hà Châu Anh
Xem chi tiết
Nguyễn Đắc Linh
6 tháng 2 2023 lúc 21:19

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9

Nguyễn Đắc Linh
6 tháng 2 2023 lúc 21:20

các câu 2;3 còn lại giống câu 1 bạn nhé

bạn thay số vào rồi làm tương tự

Phạm Ngọc Linh
6 tháng 4 lúc 18:51

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9.

Hoàng Kỳ Anh
Xem chi tiết
Đinh Hoàng Cẩm Tú
Xem chi tiết
Nguyễn khang Duy
Xem chi tiết
kaitovskudo
13 tháng 8 2016 lúc 20:42

a)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

b)\(=\frac{201.204+1}{\left(201+2\right).204-407}\)

\(=\frac{201.204+1}{201.204+2.204-407}\)

\(=\frac{201.204+1}{201.204+1}\)

=1

Võ Đông Anh Tuấn
13 tháng 8 2016 lúc 20:40

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Trần Quỳnh Mai
13 tháng 8 2016 lúc 20:41

a, \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

Dương Hồng Hạnh
Xem chi tiết
Kozakura Mary
1 tháng 2 2017 lúc 10:33

Ta có : 1.98 + 2.97 + 3.96 + ...+ 98.1 = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + .....+ ( 1 + 2 + 3 + ...+ 97 + 98 ) = \(\frac{1.2}{2}\)\(\frac{2.3}{2}\)+  \(\frac{3.4}{2}\)+ ...+ \(\frac{98.99}{2}\)\(\frac{1}{2}\)( 1 . 2 + 2 . 3 + 3 . 4 +...+ 98 . 99).

Vậy A = \(\frac{1}{2}\)

Dương Hồng Hạnh
1 tháng 2 2017 lúc 19:58

Nè bạn giải cụ thể chi tiết cho mình đk k thì mình mới k cho đk

nguyễn thị kim oanh
Xem chi tiết
Không cân biết tên
10 tháng 2 2019 lúc 9:27

Bạn kham khảo tại link này nhé.

Câu hỏi của Lê Ngọc Hà Anh - Toán lớp 6 - Học toán với OnlineMath

Không cân biết tên
10 tháng 2 2019 lúc 9:28

Bạn kham khảo nhé.

P = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 - 10 + ... + 99 - 100 + 101,Toán học Lớp 4,bài tập Toán học Lớp 4,giải bài tập Toán học Lớp 4,Toán học,Lớp 4