lx+2,1l - lx-2,1l =1,2
Tìm GTNN của
a, H=lx-1l +lx-2l +...+lx-100l
b, G=lx-2013l +lx-2014l +lx-2015l
Tim GTNN cua bt sau
a, lx-2l+ lx+28l+lx-60l
b, lxl+lx-1l+lx-2l+...+lx-2004l
Tìm x biết :
a; lx+2l+lx+4l+...+lx+10l=6x
b; lx+1l+lx+2l+...+lx+10l=13x-26
c; l1-xl+l2-xl+l3-xl=x-5
d;lx+1/2l+lx-1/3l+lx+1/4l=10-5x
bn nào pk lm giúp mk vs ạ
Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.
e hok lớp 6
mà bài này dễ có điều dài
Tìm các số nguyên x thỏa mãn:
2005 = lx - 4l + lx - 10l + lx + 101l + lx + 990l + lx + 1000l
Ta có: 2005=|x-4|+|x-10|+|x+101|+|x+990|+|x+1000|
2005=|4-x|+|10-x|+|x+101|+|x+990|+|x+1000|
Mặt khác ta có |4-x|+|10-x|+|x+990|+|x+1000| lớn hơn hoặc bằng |4-x+10-x+x+990+x+1000|=2004
Ta lại có |4-x|+|10-x|+|x+101|+|x+990|+|x+1000|=2005
nếu |4-x|+|10-x|+|x+990|+|x+1000|=2005
=>|x+101|=0
=>x=-101
Nếu |4-x|+|10-x|+|x+990|+|x+1000|=2004
=>|x+101|=1
=>x=-100
Thử lại ta thấy x=-100 là thõa mãn đề bài
lx+1l + lx+ 3l + ...+ lx+97 l+ lx+99l=51x
Ta thấy :
|x + 1| ≥ 0
|x + 3| ≥ 0
.......
|x + 97| ≥ 0
|x + 99| ≥ 0
Cộng vế với vế ta được :
|x + 1| + |x + 3| + ... + |x + 97| + |x + 99| ≥ 0
Hay 51x ≥ 0 Mà 51 > 0 => x ≥ 0
=> |x + 1| + |x + 3| + ... + |x + 97| + |x + 99| = x + 1 + x + 3 + .... + x + 97 + x + 99
= 50x + 2500 = 51x
=> x = 2500
Ta có :
\(\left|x+1\right|\ge0\)
\(\left|x+3\right|\ge0\)
\(\left|x+5\right|\ge0\)
.........
\(\left|x+97\right|\ge0\)
\(\left|x+99\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|+......+\left|x+97\right|+\left|x+99\right|\ge0\)
\(\Rightarrow51x\ge0\)
Mặt khác \(51>0\)
Nên \(x\ge0\)
=> |x + 1| + |x + 3| + |x + 5| + ...... + |x + 99|
= x + 1 + x + 3 + x + 5 + ....... + x + 99 = 51x
=> 50x + (1 + 3 + 5 + ..... + 99) = 51x
Áp dụng công thức tính dãy số ta có :
1 + 3 + 5 + .... + 99 = 2500
=> 50x + 2500 = 51x
=> x = 2500
tìm GTNN của lx-1l+ lx-2l +lx-3l+ lx-4l
áp dụng tính chất : lx| = |-x|
|x|+|y|\(\ge\)|x+y|
ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4
vậy giá trị nhỏ nhất là 4
dấu = xảy ra khi tất cả cùng dấu
cậu nên mua quyển sách mình nói nêu là dân chuyên toán
1. với giá trị nào của x thì A=lx-3l + lx-5l + lx-7l đạt giá trị nhỏ nhất ?
2. với giá trị nào của x thì B= lx-1l + lx-2l + lx-3l + lx-5l đạt giá trị nhỏ nhất ?
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Tìm GTNN của T= lx-1l + lx-2l + lx-3l + lx-4l
Ta có
T=/x-1/+/x-2/+/x-3/+/x-4/
=/x-1/+/2-x/+/x-3/+/4-x/
Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/
=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2
nhớ tick mình nha
Tinh GTNN:
lx+2l+lx+5l+lx-7l+lx-8l