Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thành Công
Xem chi tiết
Trần Hoàng Minh
Xem chi tiết
alibaba nguyễn
29 tháng 5 2017 lúc 10:29

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

Cao Văn Vinh
9 tháng 6 2017 lúc 14:50

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

Nguyen Quoc Cuong
12 tháng 6 2017 lúc 17:27

dcmm may

Quậy nhất xóm
Xem chi tiết
Thắng Nguyễn
13 tháng 4 2016 lúc 12:03

gọi d là UCLN(12n+1;30n+2)

ta có:

[5(12n+1)]-[2(30n+2)] chia hết d

=>[60n+5]-[60n+4] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản

Sakura Kinomoto
Xem chi tiết
DanAlex
6 tháng 6 2017 lúc 20:46

Gọi d là ƯCLN của (n;n+1)

\(\Rightarrow\)n chia hết cho d; (n+1) chia hết cho d

\(\Rightarrow\)(n+1) - n chia hết cho d

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow d\in\){1;-1}

Vậy \(\frac{n}{n+1}\)là phân số tối giản

nguyển văn hải
6 tháng 6 2017 lúc 20:51

gọi d là ƯCLN{n;n+1}

ta có: n chia hết ; n+1 chia hết cho d (1)

=> n+1-n chia hết cho d

=> 1 chia hết cho d (2)

từ (1) và(2)=> d= +1 và -1

vậy \(\frac{n}{n+1}\)là phân số tối giản

Hoàng Văn Dũng
7 tháng 6 2017 lúc 7:15

Gọi d là ƯCLN(n;n+1)

=>n chia hết cho d;(n+1) chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d thuộc {1;-1}

Vậy \(\frac{n}{n+1}\)là phân số tối giản

BLACK CAT
Xem chi tiết
Nguyễn Thái Dương
Xem chi tiết
%$H*&
1 tháng 5 2019 lúc 15:37

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

#Tiểu_Bối#
1 tháng 5 2019 lúc 15:40

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

%$H*&
1 tháng 5 2019 lúc 15:44

2) \(A=\frac{n+2}{n-5}\left(n\in Z;n\ne5\right)\)

\(\Rightarrow\left(n+2\right)⋮\left(n-5\right)\)

\(\Rightarrow\left(n+2\right)-\left(n-5\right)⋮\left(n-5\right)\)

\(\Rightarrow7⋮n-5\Rightarrow n-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta xét bảng:

\(n-5\)\(-1\)\(1\)\(-7\)\(7\)
\(n\)\(4\)\(6\)\(-2\)\(12\)

Vậy\(n\in\left\{-2;4;6;12\right\}\)

Phí Lan Thảo
Xem chi tiết
Hoàng Đỗ Việt
Xem chi tiết
Nguyễn Lê Hoàng
14 tháng 4 2017 lúc 23:34

2n+1/2n(2n+1)

=1/2n

=> đó là phân số tối giản

ST
15 tháng 4 2017 lúc 5:16

a, \(A=\frac{a^3+a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+a\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b, Gọi ƯCLN(a2 + a - 1,a2 + a + 1) là d

=> a2 + a - 1 chia hết cho d

    a2 + a + 1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d

=> 2 chia hết cho d

=> d = {1;2}

Mà a2 + a - 1 = a(a + 1) - 1 là số lẻ nên d là số lẻ

=> d khác 2

=> d = 1

Vậy A là phân số tối giản (đpcm)

Huyền Trang Nguyễn
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 5 2016 lúc 17:42

Gọi d là ƯC(n;n+1) 

Khi đó: n chia hết co d n+1 chia hết cho d

=> (n+1)-n chia hết cho d 

=> 1 chia hết cho d

=> d=1 

Vậy n/n+1 là phân số tối giản