Tính nhanh: C= 1/1.2 - 2/2.4 - 3/4.7 - ....- 12/67.79 - 13/79.92
1/1.2 + 2/2.4 + 3/4.7 +...+ 10/46.56 = ?
1:1.2+2:2.4+3:4.7+.......+10:46.56
1/1.2+2/2.4+3/4.7+...+10/46/56
=1-1/2+1/2-1/4+1/4-1/7+...+1/46-1/56
=1-1/56
=55/56
tính
a) P = 1 / 1.2 + 2 / 2.4 + 3 / 4.7 + ...+ 10 / 46.56
b) A= 3 / 1.2 + 3 / 2.3 + 3 / 3.4 + ....+ 3 / 99.100 chú ý : / là phần nha
c) B = 3 / 1.4 + 3 / 4.7 + 3 / 7.10 + ... + 3 / 100.103
d) C= 5 / 1.4 + 5 / 4.7 + 5 / 7.10 + ...+ 5 / 100.103
e) D= 7 / 1.5 + 7 / 5.9 + 7 / 9.13 +...+ 7 / 101.105
a)\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{46}-\frac{1}{56}\)
=\(1-\frac{1}{56}=\frac{55}{56}\)
b)\(A.\frac{1}{3}=\frac{1}{3}.\left(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{99.100}\right)\)
= \(\frac{1}{3}A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{3}{99.100}\)
=> \(\frac{1}{3}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{3}A=1-\frac{1}{100}=\frac{99}{100}\)
=> \(A=\frac{99}{100}.3=\frac{297}{100}\)
c)\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
=\(1-\frac{1}{103}=\frac{102}{103}\)
d) \(\frac{3}{5}C=\frac{3}{5}.\left(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\right)\)
=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\)
=\(1-\frac{1}{103}=\frac{102}{103}\)
=>\(C=\frac{102}{103}.\frac{5}{3}=\frac{170}{103}\)
e) \(\frac{4}{7}D=\frac{4}{7}.\left(\frac{7}{1.5}+\frac{7}{5.9}+...+\frac{7}{101.105}\right)\)
=\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{101.105}\)
=\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)
=\(1-\frac{1}{105}=\frac{104}{105}\)
=< D=\(\frac{104}{105}.\frac{7}{4}=\frac{26}{15}\)
1/1.2+2/2.4+3/4.7+............+10/46.56
1/1.2+2/2.4+3/4.7+...+10/46.56
=1-1/2+1/2-1/4+1/4-1/7+...+1/46-1/56
=1-1/56
=55/56
Tính \(\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+...+\frac{10}{46.56}\)
tính
a) P = 1 / 1.2 + 2 / 2.4 + 3 / 4.7 + ...+ 10 / 46.56
b) A= 3 / 1.2 + 3 / 2.3 + 3 / 3.4 + ....+ 3 / 99.100 chú ý : / là phần nha
c) B = 3 / 1.4 + 3 / 4.7 + 3 / 7.10 + ... + 3 / 100.103
d) C= 5 / 1.4 + 5 / 4.7 + 5 / 7.10 + ...+ 5 / 100.103
e) D= 7 / 1.5 + 7 / 5.9 + 7 / 9.13 +...+ 7 / 101.105
a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)
\(P=1-\dfrac{1}{56}\)
\(P=\dfrac{55}{56}\)
b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)
\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=3\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}\)
\(A=\dfrac{297}{100}\)
c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(B=1-\dfrac{1}{103}\)
\(B=\dfrac{102}{103}\)
d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)
\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}.\dfrac{102}{103}\)
\(C=\dfrac{170}{103}\)
e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)
\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}.\dfrac{104}{105}\)
\(D=\dfrac{26}{15}\)
P=1/1.2 + 2/2.4 + 3/4.7 +.........+10/46.56
giúp mình với các bạn ơi!
\(\Rightarrow P=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+......+\frac{1}{46}-\frac{1}{56}\)
\(\Rightarrow P=1-\frac{1}{56}\)
\(\Rightarrow P=\frac{55}{56}\)
tính
\(P=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+...+\frac{10}{46.56}\)
giups mih vs
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{46}-\frac{1}{56}\)
\(P=1-\frac{1}{56}\)
\(P=\frac{55}{56}\)
1/1.2 + 1/2.4 + 1/4.7 + ... + 1/46.56