Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam yêu Phương
Xem chi tiết
Nguyễn Lê Dương Huy
9 tháng 10 2016 lúc 10:44

99x101x103:6

Lê Hoàng Anh
Xem chi tiết
Không Tên
29 tháng 7 2018 lúc 15:33

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)

\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)

\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)

\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)

Lê Hoàng Anh
29 tháng 7 2018 lúc 15:45

Câu A bạn quên 1/4.5 kìa , với câu D đâu >>>
 

Porn
26 tháng 10 lúc 20:08

Lam mô a Di Đà Phật 

 

Kim Sejeong
Xem chi tiết
Hoàng Nguyễn Xuân Dương
3 tháng 5 2015 lúc 15:50

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

    =1-1/101

    =100/101

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5

    =(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5

    =(1-1/101).2,5

    =100/101.2,5

    =250/101

c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2

    =(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2

    =(1/2-1/2010).2

    =1004/1005

pha dinh
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 10 2016 lúc 14:20

6.B=1.3.6+3.5.6+5.7.6+...+95.97.6+97.99.6

6.B=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+95.97.(99-93)+97.99(101-95)

6.B=1.3.5+1.3+3.5.7-1.3.5+5.7.9-3.5.7+...+95.97.99-93.95.97+97.99.101-95.97.99=1.3+97.99.101

B=(3+97.99.101)/6

Vũ Ngọc Diệp
Xem chi tiết
Van Toan
3 tháng 3 2023 lúc 19:19

\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\\ =\dfrac{4}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =2.\left(1-\dfrac{1}{101}\right)\\ =2.\dfrac{100}{101}\\ =\dfrac{200}{101}\)

⭐Hannie⭐
3 tháng 3 2023 lúc 19:20

`4/1.3+4/3.5+4/5.7+...+4/99.101`

`=2(2/1.3+2/3.5+2/5.7+...+2/99.101)`

`=2(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)`

`=2(1-1/101)`

`=2. 100/101`

`=200/101`

Phạm Thị Diệu Huyền
Xem chi tiết
Đức Phạm
5 tháng 8 2017 lúc 12:51

\(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{1}{55}\)

\(B=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}\)

\(B=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)

\(B=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(B=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)

Phạm Thị Diệu Huyền
5 tháng 8 2017 lúc 12:53

làm cả 3 nhé 

OoO_Huy_Ngu_OoO
22 tháng 3 2018 lúc 6:32

bạn do not ask why làm sai ở bước 4 rồi 

Hải Đăng
Xem chi tiết
Nguyễn Trần Thành Đạt
26 tháng 5 2017 lúc 14:43

a, \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}=\dfrac{100}{101}\)

Nguyễn Huy Tú
26 tháng 5 2017 lúc 14:54

b, \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+...+\dfrac{5}{99.101}\)

\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)

Vậy...

Adorable Angel
26 tháng 5 2017 lúc 15:02

21.3" id="MathJax-Element-7-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:22.5px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0"> + 23.5" id="MathJax-Element-8-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:22.5px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0"> + 25.7" id="MathJax-Element-9-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:22.5px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0"> +......+299.101" id="MathJax-Element-10-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:22.5px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{101}{101}+\dfrac{-1}{101}\)

\(=\dfrac{100}{101}\)

Kỳ Tỉ
Xem chi tiết
Thắng Nguyễn
14 tháng 4 2016 lúc 19:28

bài 1

\(2A=\left(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{99\cdot101}\right)\cdot2\)

\(=5\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\right)\)

\(=5\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=5\left(1-\frac{1}{101}\right)\)

\(=5\cdot\frac{100}{101}\)

\(=\frac{500}{101}\Rightarrow A=\frac{500}{101}:2=\frac{250}{101}\)

bài 2:

\(x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=-\frac{37}{45}\)

\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)

\(x+\frac{8}{45}=-\frac{37}{45}\)

\(x=-\frac{37}{45}-\frac{8}{45}\)

\(x=\frac{-45}{45}=-1\)

Triple Dark Soul
Xem chi tiết
SKT_Ruồi chê Nhặng mất v...
11 tháng 2 2018 lúc 9:49

Bài 1:

Ta có:

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

b, Đặt  \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)

Bài 2:

Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)

\(\Rightarrow\left(2n+1;3n+2\right)=1\)

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản

Neymar Jr
11 tháng 2 2018 lúc 11:07

1.          Giải 

a,  \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

b,   \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)

2.    Giải 

Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*) 

=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)

=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d

=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)

=> (6n + 4) - (6n + 3) \(⋮\)

=> 1 \(⋮\)

=> d = 1 

Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản