Tìm stn n để M=2n+1/n-1 nguyên
tìm stn n để 2n+7 và n+1 nguyên tố cùng nhau
Gọi d là UCLN(2n+7;n+1).Ta có:
2n+7 chia hết cho d
n+1 chia hết cho d=>2n+2 chia hết cho d.Vậy:
(2n+7)-(2n+2) chia hết cho d
=5 chia hết cho d
Vì 5 chia hết cho d nên ko co số tự nhiên n nào để 2n+7 và n+1 là hai số nguyên tố cùng nhau
Tìm STN n để :
2n + 7 chia hết cho 2n + 1
Tìm STN m để :
3m - 9 chia hết cho 3m - 1
a) \(2n+7⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+6⋮2n+1\)
\(\Rightarrow6⋮2n+1\)(vì \(2n+1⋮2n+1\))
\(\Rightarrow2n+1\inƯ\left(6\right)\)
\(\Rightarrow2n+1\in\left\{1;2;3;6\right\}\)
\(\Rightarrow\)\(2n\in\left\{0;1;2;5\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b) \(3m-9⋮3m-1\)
\(\Rightarrow\left(3m-1\right)-8⋮3m-1\)
\(\Rightarrow8⋮3m-1\)(vì \(3m-1⋮3m-1\))
\(\Rightarrow3m-1\inƯ\left(8\right)\)
\(\Rightarrow3m-1\in\left\{1;2;4;8\right\}\)
\(\Rightarrow3m\in\left\{2;3;5;9\right\}\)
\(\Rightarrow m\in\left\{1;3\right\}\)
Hok "tuốt" nha^^
1.tìm các stn n đe 2n+7 và n+1 nguyên tố cùng nhau
2.cmr (21n+4)và 14n +3 ntcn
3.tìm stn để (3n-4) chia hết cho (6-n)
1. a,Tìm x,y nguyên tố thỏa mãn 7x mũ 2 + 41 = 6 mũ y
b,tìm stn nhỏ nhất có 6 ước
c,tìm stn n để 2n - 5 chia hết cho n - 1
Tìm STN n để 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau
GIÚP MÌNH VỚI !!!
Tìm stn n để \(Q=\frac{6n+5}{2n-1}\)nguyên
Tìm stn n để 2n2+n+3 chia hết 2n+1
Tìm STN n để :
a, n+8 : n+1
b, 2n + 3 : n
c,2n+5 : n+2
d,3n+1 : 2n+5
a, có n+8 chia hết cho n+1
n+1+7 : n+1
mà n+1 : n+1
nên 7:n+1 suy ra n+1 thuoc ước của 7={1,7}
với n+1=1 với n+1=7
n=0 n=6
a) n + 8 chia hết cho n + 1
n + 1 + 7 chia hết cho n + 1
=> 7 chia hết cho n + 1
=> n + 1 thuộc Ư(7) = {1;-1;7;-7}
Còn lại tự xét 4 trường hợp vào n + 1 rồi tìm n
Vì dụ : n + 1 = 1 => n = 0
n + 1 = -1 => -2
,,,,,
b) 2n + 3 chia hết cho n
=> 3 chia hết cho n (vì 2n có n trong tích => 2n chia hết cho n )
=> n thuộc Ư(3) = {1 ; -1 ; 3; -3}
Còn lại giống câu a
c) 2n + 5 chia hết cho n + 2
2x + 4 + 1 chia hết cho n + 2
=> 2(n + 2) + 1 chia hết cho n + 2
=> 1 chia hết cho n +2
=> n + 2 thuộc Ư(1) = {1; -1}
Còn lại giống bài a
d) 3n + 1 chia hết cho 2n + 5
2(3n + 1) chia hết cho 2n + 5
6n + 2 chia hết cho 2n + 5
6n + 15 - 13 chia hết cho 2n + 5
3.(2n + 5) - 13 chia hết cho 2n + 5
=> -13 chia hết cho 2n + 5
=> 2n + 5 thuộc Ư(-13) = {1 ; -1; - 13 ; -13}
Giông bài a
tìm stn n để n3-4n2-2n+15 là số nguyên tố
Ta có:
\(n^3-4n^2-2n+15=n^3-3n^2-n^2+3n-5n+15\)
\(=\left(n-3\right)\left(n^2-n-5\right)\)
Để \(n^3-4n^2-2n+15\)là số nguyên tố thì
\(\orbr{\begin{cases}n-3=1\\n^2-n-5=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=4\\n=3\end{cases}}\)(vì \(n\)là số tự nhiên)
Với \(n=4\): \(n^3-4n^2-2n+15=7\)là số nguyên tố, thỏa mãn.
Với \(n=3\): \(n^3-4n^2-2n+15=0\)không là số nguyên tố, loại.