Tính nhanh : \(A=2008^{\left(1.9.4.7\right).\left(9.4.7\right)...\left(1.9.9.9\right)}\)
tính nhanh :
a, \(\left[1+\frac{1}{2005}\right]x\left[1+\frac{1}{2006}\right]x\left[1+\frac{1}{2007}\right]x\left[1+\frac{1}{2008}\right]x\left[1+\frac{1}{2009}\right]\)
a. 2006/2005 x 2007/2006 x 2008/2007 x 2009/2008 x 2010/2009'
= 2006 x 2007 x 2008 x 2009 x 2010 / 2005 x 2006 x 2007 x 2008 x 2009
= 2010/2005
= 402/401
\(\left(1+\frac{1}{2005}\right)x\left(1+\frac{1}{2006}\right)x\left(1+\frac{1}{2007}\right)x\left(1+\frac{1}{2008}\right)x\left(1+\frac{1}{2009}\right)\)
\(=\frac{2006}{2005}x\frac{2007}{2006}x\frac{2008}{2007}x\frac{2009}{2008}x\frac{2010}{2009}\)
\(=\frac{2010}{2005}\)
\(=\frac{402}{401}\)
Nguyễn Khánh Linh
a,
\(\left[1+\frac{1}{2005}\right].\left[1+\frac{1}{2006}\right].\left[1+\frac{1}{2007}\right].\left[1+\frac{1}{2008}\right].\left[1+\frac{1}{2009}\right]\)
\(\Rightarrow\left[\frac{2005}{2005}+\frac{1}{2005}\right]\left[\frac{2006}{2006}+\frac{1}{2006}\right]\left[\frac{2007}{2007}+\frac{1}{2007}\right]\) \(\left[\frac{2008}{2008}+\frac{1}{2008}\right]\left[\frac{2009}{2009}+\frac{1}{2009}\right]\)
\(\Rightarrow\frac{2006}{2005}.\frac{2007}{2006}.\frac{2008}{2007}.\frac{2009}{2008}.\frac{2010}{2009}\)
\(\Rightarrow\frac{2010}{2005}=\frac{402}{401}\)
Tính nhanh:
a) A=\(1^2-2^2+3^2-4^2+...-2008^2+2009^2\)
b) B= \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
b, B=(2+1)(22+1)(24+1)(28+1)(216+1)-232
=(24-1)(24+1)(28+1)(216+1)-232
=(28-1)(28+1)(216+1)-232
=(216-1)(216+1)-232
=232-1-232
=-1
\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}=\frac{19}{29}\)
\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}=\frac{19}{49}\)
điểu kiện xác định x khác 2007 and x khác 2008
Đặt a=x-2008 ( a khác 0 ,) ta có hệ thức
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\)
=>\(\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
=>\(49a^2+49a+49=57a^2+57a+19\)
=>\(8a^2+8a-30=0\)
=>\(\left(2a-1\right)^2-4^2=0=>\left(2a-3\right)\left(2a+5\right)=0\)
=>\(\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}}\)(Thỏa mãn điều kiện)
Tự thay a xong suy ra x nhá
Mệt lắm r
\(???\)\(\frac{19}{29}ak\)
ko sao , bạn cx nhân chéo lên tương tự như cách làm của mình xong => ra a mà làm nha . Hihi ..^^
THU GỌN\(\frac{\left(A+2008\right)!+\left(A+2009\right)!}{\left(A+2008\right)!-\left(A+2009\right)!}\)
Nhớ rằng \(\left(A+2009\right)!=\left(A+2009\right)\left(A+2008\right)!\).
Thu gọn thì được \(P=\frac{1+A+2009}{1-\left(A+2009\right)}=-\frac{A+2010}{A+2008}\)
\(\frac{\left(A+2008\right)+\left(A+2009\right)}{\left(A+2008\right)-\left(A+2009\right)}\)
\(=\frac{2A+4017}{-1}\)
\(=-2A-4017\)
Tính nhanh
A=2008(1.9.4.6).(1.9.4.7)....(1.9.9.9)
B=(1000-13).(1000-23).(1000-33)....(1000-503)
Giải phương trình : \(\dfrac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(2008-x\right)+\left(x-2008\right)^2}\)=\(\dfrac{19}{49}\)
bài 1: tính nhanh
a, (100-13).(100-23).(100-33)..........(100-503)
b, \(\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...........+\frac{5^2}{56.61}\)
c, \(2^{100}-2^{99}+2^{98}-2^{97}+.......+2^2-2^1\)
d, \(2015^{\left(1.4.9.6\right).\left(1.4.9.7\right).\left(1.4.9.8\right)....\left(1.9.9.9\right)}\)
bài 2: Tính
a, \(A=\left(-1\right).\left(-1\right)^2.\left(-1\right)^3.\left(-1\right)^4.\left(-1\right)^5.........\left(-1\right)^{99}\)
b, \(B=512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-........-\frac{512}{2^{10}}\)
đang bận làm để thông cảm nha có j kiếm lại chất xám mình giải cho
Thu gọn
\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2009^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2010^4+\frac{1}{4}\right)}\)
\(B=\frac{\left(a+2008\right)!+\left(a+2009\right)!}{\left(a+2008\right)!-\left(a+2009!\right)}\)
Giải phương trình:
\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2+\left(2007-x\right)\left(2008-x\right)+\left(x-2008\right)^2}=\frac{19}{49}\)
Bạn nào giải được trước 8h30 mk sẽ hậu tạ 200k
mk giải cho mà saI CÓ đc tiền k