Cho biểu thức: A=1/11+1/12+1/13+...+1/40. Chứng minh: A<2
Cho A = 1/11+1/12+1/13+...+1/40. Chứng minh A ko phải là số tự nhiên
Cho A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{40}\)
Chứng minh A không phải là số tự nhiên
Cho A=\(\frac{1}{11}\)+\(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{40}\). Chứng minh A không thuộc N
Bài 1:Cho: A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{40}\)
Chứng minh A không phải là số tự nhiên
Sau khi quy đồng ta thấy mẫu số chứa lũy thừa của 2
Và tử số không chia hết cho 40 ( Dựa theo tính chất lớp 6) >>A không chia hết cho m b không chia hết cho m và c không chia hết cho m =>(a+b+c) ko chia hết cho m
=>=>Dãy số này ko phải là dãy số tự nhiên .
Bài 1:Cho: A=\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{40}\)
Chứng minh A không phải là số tự nhiên
Giải:
Các phân số thuộc tổng trên khi quy đồng mẫu chứa lũy thừa của \(2\) với số mũ lớn nhất là \(2^5.\)
\(\Rightarrow\) Khi quy đồng mẫu số, các phân số đều có tử chẵn, chỉ có phân số \(\dfrac{1}{32}\) có tử lẻ.
\(\Rightarrow\) Tổng trên có tử lẽ, mẫu chẵn, không phải là số tự nhiên.
Vậy \(A\) không phải là số tự nhiên. \((đpcm)\)
các bạn xem giúp mik mấy bài sau nha
1- CM 1 x 3 x 5 x ... x 19 = 11/2 . 12/2 . 13/2 . ..20/2
2- chứng minh 1- 1/2 + 1/3 - 1/4 + 1/5-1/6+ ...+ 1/19 - 1/20 = 1/11 + 1/12 + 1/13 + .. +1/20
3- Tính giá trị biểu thức
A) A= 1/2 + 1/2^2 + 1/2^3 + ...+ 1/2^9
B) B= 1/4+ 1/12 + 1/36 + 1/108 + 1/324 + 1/972
4- tìm hai số a,b biết a + b =3 (a-b) = 2. a/b
5- cho a/b = 1/2+ 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9. Chứng minh a chia hết cho 11
6- chứng minh tổng sau ko là số tự nhiên: 1/2+ 1/3+ 1/4 +...+ 1/50
các bn trả lời nhanh giúp mình, một câu cũng được, nhưng cố giúp mình toàn bộ nha
Cho tổng A=1/11+1/12+1/13+1/14+.....+1/40.Hãy chứng tỏ 1<A<2
a)Cho A= 3/10+3/11+3/12+3/13+3/14.
Chứng minh A<3/2
b)Cho B=1/11+1/12+1/13+....+1/20.
Chứng minh 7/12<B<5/6c
c)Cho C=1/5+1/6+....+1/17
Chứng minh C>1
Bài 1 :
Cho A = \(1+3+3^2+....+3^{11}\) . Chứng minh rằng :
a) A chia hết cho 13 b) A chia hết cho 40
Bài 2 :
Cho C = \(3+3^2+3^3+3^4+......+3^{100}\) . Chứng minh rằng : C chia hết cho 40 .
Bài 3 :
Cho biểu thức : M = \(1+3+3^2+3^3+......+3^{118}+3^{119^{ }}\)
a) Thu gọn biểu thức M b) Biểu thức M có chia hết cho 5 , 13 không . Vì sao ?
Bài 4 :
Cho S = \(5+5^2+5^3+5^4+5^5+5^6+.......+5^{2012}\) . Chứng minh rằng S chia hết cho 65.
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)