Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bá Đạo 102
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
Harry Potter
Xem chi tiết
Trần Thị Hoàn
Xem chi tiết
Nụ cười bỏ quên
19 tháng 6 2017 lúc 19:19

Sau khi quy đồng ta thấy mẫu số chứa lũy thừa của 2 

Và tử số không chia hết cho 40 ( Dựa theo tính chất lớp 6) >>A không chia hết cho m b không chia hết cho m và c không chia hết cho m =>(a+b+c) ko chia hết cho m

=>=>Dãy số này ko phải là dãy số tự nhiên .

Trần Thị Hoàn
Xem chi tiết
Phương Trâm
19 tháng 6 2017 lúc 21:28

Giải:

Các phân số thuộc tổng trên khi quy đồng mẫu chứa lũy thừa của \(2\) với số mũ lớn nhất là \(2^5.\)

\(\Rightarrow\) Khi quy đồng mẫu số, các phân số đều có tử chẵn, chỉ có phân số \(\dfrac{1}{32}\) có tử lẻ.

\(\Rightarrow\) Tổng trên có tử lẽ, mẫu chẵn, không phải là số tự nhiên.

Vậy \(A\) không phải là số tự nhiên. \((đpcm)\)

duy
Xem chi tiết
nguyễn văn tiến đạt
Xem chi tiết
Thuy Vu
Xem chi tiết
Trịnh Thị Minh Ánh
Xem chi tiết
thám tử
1 tháng 10 2017 lúc 12:53

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

Trịnh Như Phương
1 tháng 10 2017 lúc 20:46

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)