Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thị Ngọc Anh
Xem chi tiết
Đinh Thị Thu Hằng
Xem chi tiết
☆☆《Thiên Phi 》☆☆
Xem chi tiết
Mike
26 tháng 5 2019 lúc 21:46

đặt A = 1/1*2 +  1/3*4 + 1/5*6 + ... + 1/99*100

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/99 - 1/100

= (1 + 1/3 + 1/5 + ... + 1/99) - (1/2 + 1/4 + 1/6 + ... + 1/100)

= 1 + 1/2 + 1/3 + ... + 1/100 - 2(1/2 + 1/4 + 1/6 + .... + 1/100)

= 1 + 1/2 + 1/3 + ... + 1/100 - 1 - 1/2 - 13 - ... - 1/50

= 1/51 + 1/52 + 1/53 + ... + 1/100

thay vào ra E = 1

Lê Tài Bảo Châu
26 tháng 5 2019 lúc 21:49

Biến đổi mẫu ta được:

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\Rightarrow E=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=1\)

Kiệt Nguyễn
26 tháng 5 2019 lúc 22:10

Đặt \(P=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(\Rightarrow P=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(\Rightarrow P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow P=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Vậy E = 1

Hoang Nghia Thien Dat
Xem chi tiết
UcHihA SaSUkE
15 tháng 3 2016 lúc 15:35

Tính $E=\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..+\frac{1}{99.100}}$E=151 +152 +153 +....+1100 11.2 +13.4 +15.6 +..+199.100  

Toán lớp 6

Tôi thích hoa hồng
15 tháng 3 2016 lúc 15:43

Rút gọn mẫu ta được:

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}\)

Vì tử và mẫu bằng nhau nên biểu thức bằng 1

Bạn muốn biết cách rút gọn mẫu thì gửi tin nhắn cho mình

Trương Phương Mai
Xem chi tiết
Arima Kousei
13 tháng 3 2018 lúc 20:36

1/1 . 2 + 1/ 3 . 4 + 1/5 . 6 + ...+ 1/99 . 100 

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...+ 1/99 - 1/100 

= ( 1 + 1/3 + 1/5 + ...+ 1/99 ) - ( 1/2 + 1/4 + ...+ 1/100 ) 

= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - 2 . ( 1/2 + 1/4 + ...+ 1/100 ) 

= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - ( 1 + 1/2 + ...+ 1/50 ) 

=     1/51 + 1/52 + ...+ 1/100 

Tham khảo nha !!! 

Nguyễn Phương Uyên
13 tháng 3 2018 lúc 20:39

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)   (đpcm)

key monstar
Xem chi tiết
iceboy
Xem chi tiết
Hoàng Diệu Quỳnh
27 tháng 12 2017 lúc 20:55

cô trang dạy rồi mà

nguyen thu phuong
25 tháng 1 2018 lúc 21:47

Khó kinh .."

Phạm Tuấn Đạt
3 tháng 3 2018 lúc 21:08

Gọi \(Q=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow Q=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow Q=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(\Rightarrow Q=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-2\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(\Rightarrow Q=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\Rightarrow P=1\)

Lê Ánh Huyền
Xem chi tiết
Đức Anh Lê
Xem chi tiết
Nguyễn Duy Long
12 tháng 5 2016 lúc 20:28

Xét vế trái: A\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

=>\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

=>\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

=>\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

=>\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)

=>đpcm         (VP là vế phải)