Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tung nguyen
Xem chi tiết
Dich Duong Thien Ty
21 tháng 7 2015 lúc 11:26

Ta có:

10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)  = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A

 Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).  

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).  

=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3

=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3

=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

lyhaiquan
Xem chi tiết
Pham Van Hung
13 tháng 10 2018 lúc 15:10

\(A=n^3\left(n^2-7\right)^2-36n\)

\(=n\left[n^2\left(n-7\right)^2-36\right]\) 

\(=n\left[\left(n^3-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n\left[n^3+n^2-n^2-n-6n-6\right].\left[n^3-n^2+n^2-n-6n+6\right]\)

\(=n\left[n^2\left(n+1\right)-n\left(n+1\right)-6\left(n+1\right)\right]\left[n^2\left(n-1\right)+n\left(n-1\right)-6\left(n-1\right)\right]\)

\(=n\left(n+1\right)\left(n^2-n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(=n\left(n+1\right)\left[n\left(n-3\right)+2\left(n-3\right)\right]\left(n-1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(=n\left(n+1\right)\left(n-3\right)\left(n+2\right)\left(n-1\right)\left(n+3\right)\left(n-2\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì A là tích của 7 số nguyên liên tiếp nên A chia hết cho 3,5 và 7

\(\Rightarrow A⋮\left(3.5.7\right)\Rightarrow A⋮105\)

Chúc bạn học tốt.

lyhaiquan
13 tháng 10 2018 lúc 20:20

n^2(n-7)=(n^3-7n^2)^2 chu ban

Nguyen Thi Lan
Xem chi tiết
Trần Quỳnh Mai
3 tháng 6 2017 lúc 19:58

Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)

\(=99...9-9n+27n\)( n c/s 9 )

\(=9\left(11...1-n\right)+27n\)( n c/s 1 )

Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)

Mà : \(27n⋮27\Rightarrow A⋮27\)

Vậy ...

Ngô Tấn Đạt
3 tháng 6 2017 lúc 19:58

Ta có :

\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)

Ta có công thức :

\(a^m-b^m⋮a-b\) với mọi a;b thuộc R

\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)

Hoàng Thu Huyền
3 tháng 6 2017 lúc 20:05

bạn Trần Quỳnh Mai ơi phải là n -1 chữ số 9 chứ

tranquockhanh
Xem chi tiết
Zeref Dragneel
26 tháng 11 2015 lúc 11:03

C= 10^n +18n ‐ 1=10^n‐1+18n

=99..9﴾n chữ số 9﴿+18n =9﴾11...1﴾n chữ số 9﴿+2n﴿

Xét 11...1﴾n chữ số 9﴿+2n=11...1‐ n+3n

Dễ thấy tổng các chữ số của 11..1﴾n chữ số 1﴿ là n

=>11...1‐ n chia hết cho 3

=>11...1‐ n+3n chia hết cho 3

=>10^n +18n ‐ 1 chia het cho 27

tran tuan phong
Xem chi tiết
nguyen khanh ly
Xem chi tiết
Đặng Nhật Nam
1 tháng 5 2018 lúc 8:47

ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)

10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1) 

Vậy ...

T I C K cho mình nha

Chiến binh mạnh nhất
1 tháng 5 2018 lúc 8:25

toán lớp 7 à sao mà khó vậy

Đặng Nhật Nam
1 tháng 5 2018 lúc 8:42
bạn ghi đề sai nha 18.n chứ ko phải 18 mủ n nha
Hoang Diep Anh
Xem chi tiết
Nguyễn Thị Hương Giang
21 tháng 7 2016 lúc 18:26

a, ta có 2 trường hợp:

+) n chẵn =>n+10 = chẵn + chẵn = chẵn chia hết cho 2

+) n lẻ => n + 15 = lẻ + lẻ = chẵn chia hết cho 2

vậy (n+10)(n+15) chia hết cho 2(đpcm)

jennyfer nguyen
Xem chi tiết
Vũ Anh Quân
20 tháng 10 2016 lúc 19:30

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

Nguyễn Đức Minh
10 tháng 5 2022 lúc 14:09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kyoukai no rinne
Xem chi tiết