chung minh rang 10^n-36n-1 chia het cho 27
chung minh rang 10n+18n-1 chia het cho 27
Ta có:
10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3
=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3
=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
chung minh rang voimoi so nguyen n thi a =n^3(n^2-7)^2-36n chia het cho 105
\(A=n^3\left(n^2-7\right)^2-36n\)
\(=n\left[n^2\left(n-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-6^2\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n\left[n^3+n^2-n^2-n-6n-6\right].\left[n^3-n^2+n^2-n-6n+6\right]\)
\(=n\left[n^2\left(n+1\right)-n\left(n+1\right)-6\left(n+1\right)\right]\left[n^2\left(n-1\right)+n\left(n-1\right)-6\left(n-1\right)\right]\)
\(=n\left(n+1\right)\left(n^2-n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)
\(=n\left(n+1\right)\left[n\left(n-3\right)+2\left(n-3\right)\right]\left(n-1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)
\(=n\left(n+1\right)\left(n-3\right)\left(n+2\right)\left(n-1\right)\left(n+3\right)\left(n-2\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì A là tích của 7 số nguyên liên tiếp nên A chia hết cho 3,5 và 7
\(\Rightarrow A⋮\left(3.5.7\right)\Rightarrow A⋮105\)
Chúc bạn học tốt.
Chung minh rang A=10n+18n-1 chia het cho 27 ( n la so tu nhien)
Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)
\(=99...9-9n+27n\)( n c/s 9 )
\(=9\left(11...1-n\right)+27n\)( n c/s 1 )
Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)
Mà : \(27n⋮27\Rightarrow A⋮27\)
Vậy ...
Ta có :
\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)
Ta có công thức :
\(a^m-b^m⋮a-b\) với mọi a;b thuộc R
\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)
bạn Trần Quỳnh Mai ơi phải là n -1 chữ số 9 chứ
cho C =10n +18n -1 voi n thuoc N. chung minh rang C chia het cho 27
C= 10^n +18n ‐ 1=10^n‐1+18n
=99..9﴾n chữ số 9﴿+18n =9﴾11...1﴾n chữ số 9﴿+2n﴿
Xét 11...1﴾n chữ số 9﴿+2n=11...1‐ n+3n
Dễ thấy tổng các chữ số của 11..1﴾n chữ số 1﴿ là n
=>11...1‐ n chia hết cho 3
=>11...1‐ n+3n chia hết cho 3
=>10^n +18n ‐ 1 chia het cho 27
chung minh rang 9 nhan 10^n + 18 chia het cho 27 , n thuoc N
chung minh rang voi moi so nguyen duong n thi
10n + 18n -1 chia het cho 27
ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)
10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1)
Vậy ...
T I C K cho mình nha
cho n la so tu nhien chung minh rang:
a)(n+10)(n+15) chia het cho 2
b)(10n+18n-1):27
a, ta có 2 trường hợp:
+) n chẵn =>n+10 = chẵn + chẵn = chẵn chia hết cho 2
+) n lẻ => n + 15 = lẻ + lẻ = chẵn chia hết cho 2
vậy (n+10)(n+15) chia hết cho 2(đpcm)
a)Cho n thuoc N. Chunng minh rang n^2 chia het cho 3 hoac n^2 chia cho 3 du 1
b) Co ton tai n thuoc N de n^2+1=30000.....000000( ko gioi han so 0)
Chung minh rang M= 10^n +18.n-1 chia het cho 27
CAC BAN GIUP MINH VOI MAI LA ,MINH NOP ROI HUUUUUUUUUUU
AI LAM XONG MINH SE TICK CHO
a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3
b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng)
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27.
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1
= (10^k+18k-1)+9*10^k+18
= (10^k+18k-1)+9(10^k+2)
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27.
Chứng minh 9(10^k+2) chia hết cho 27.
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng)
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27.
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27.
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2)
= 9(10^m+2) +81*10^m
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27
=>9(10^k+2) chia hết cho 27
=>10^(k+1)+18(k+1)-1 chia hết cho 27
=>10^n+18n-1 chia hết cho 27=> đpcm
K MINH NHA!...............
Chung to rang : A = 10^n +18n - 1 chia het cho 27 ( voi n thuoc so tu nhien)