So sánh A và B biết:
A=\(\frac{7^{2010}+1}{7^{2011}-1}\)
B=\(\frac{7^{2011}+1}{7^{2012}-1}\)
So sánh A và B:
\(A=\frac{7^{2010}+1}{7^{2011}-1}\)
\(B=\frac{7^{2011}+1}{7^{2012}-1}\)
ta có:\(7A=\frac{7\left(7^{2010}+1\right)}{7^{2011}-1}=\frac{7^{2011}+7}{7^{2011}-1}=\frac{7^{2011}-1+8}{7^{2011}-1}=\frac{7^{2011}-1}{7^{2011}-1}+\frac{8}{7^{2011}-1}=1+\frac{8}{7^{2011}-1}\)
\(7B=\frac{7\left(7^{2011}+1\right)}{7^{2012}-1}=\frac{7^{2012}+7}{7^{2012}-1}=\frac{7^{2012}-1+8}{7^{2012}-1}=\frac{7^{2012}-1}{7^{2012}-1}+\frac{8}{7^{2012}-1}=1+\frac{8}{7^{2012}-1}\)
vì 72011-1<72012-1
\(\Rightarrow\frac{8}{7^{2011}-1}>\frac{8}{7^{2012}-1}\)
=>A>B
bài 1 :a) Tính M:\(\frac{\frac{7}{2012}+\frac{7}{9}-\frac{1}{4}}{\frac{5}{9}-\frac{3}{2012}-\frac{1}{2}}\)
b) So sánh A và B biết A =\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\);;; B =\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{17}\)
tính M
M = \(\frac{\frac{7}{2012}+\frac{7}{9}-\frac{1}{4}}{\frac{5}{9}-\frac{3}{2012}-\frac{1}{2}}\)
so sánh A và B biết
A = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\)
B = \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{17}\)
So sánh A và B:
A= (7^2010+1)/(7^2011-1) và B=(7^2011+1)/(7^2012-1)
1. Chứng tỏ: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
2.So sánh: \(\frac{2010^{2011}+1}{2010^{2012}+1}và\frac{2010^{2010}+1}{2010^{2011}+1}\)
1.So sánh A và B:
\(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\)và \(B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+..........+\frac{1}{17}\)
\(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\)
\(A=\frac{4064340600}{4066362660}+\frac{4064341605}{4066362660}+\frac{4070408792}{4066362660}\)
\(A=3,000000742\)
\(B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{17}\)
\(B=1,939552553\)
vì đây là so sánh hai dòng phân số nên ta đổi ra thập phân nhé
do 3,000000742 > 1,939552553 và 3 > 1 Nên A > B nhé
đúng thì k nhé
chúc học giỏi !!!!
So sánh : \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\) và \(\frac{2016}{2017}\)
Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)
\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)
\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)
\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)
Mà \(\frac{2016}{2017}< 1\)
Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)
dấu cần điền là : >
Vì kết quả của phép tính vế thứ 1 là 1
và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn
mình ko hiểu lắm sao tự nhiên lại đang \(\frac{1}{2010.\left[2010+2011+2012\right]}\)lại sang luôn \(\frac{\frac{1}{2010}}{2010+2011+2012}\)
a) Tìm 3 số nguyên dương biết tổng của chúng bằng nửa tích của chúng
b) tìm các số tự nhiên x,y soa cho ƯCLN (x,y) = 1 và\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
c) So sánh A =\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\) và B =\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+......+\frac{1}{17}\)
mik fan Phong ca nè bạn
So sánh A và B biết \(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\) và \(B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{17}\)