Bài 73:
Cho tứ giác ABCD, đường chéo AC và BD. Gọi E là trung điểm của AC, từ E kẻ đường thẳng song song với BD cắt DC tại F. Nối B với F. Chứng tỏ rằng đoạn BF chia tứ giác ABCD thành hai phần có diện tích bằng nhau.
Cho tứ giác ABCD, đường chéo AC và BD. Gọi E là trung điểm của AC, từ E kẻ
đường thẳng song song với BD cắt DC tại F. Nối B với F. Chứng tỏ rằng đoạn BF chia tứ
giác ABCD thành hai phần có diện tích bằng nhau.
cho tứ giác abcd đường chéo ac và bd gọi e là trung điểm ac từ e kẻ đường song song với cd cắt cd tại f nối bf chứng tỏ rằng bf chia abcd thành 2 phần bằng nhau
bạn sai đề rồi kìa song song với cd mà lại cắt cd đc
Trl :
bạn kia làm đúng rồi nhé
hk tốt nhé bạn @
hai phần bằng nhau là AC và BD
Cho tứ giác ABCD. Kẻ hai đứng chéo BD và AC . Điểm E là trung điểm của AC . Từ E kẻ đường song song với BD cắt cạnh DC tại F nối BF . Hãy chứng tỏ rằng đoạn BF chia tứ giác ABCD thành hai phần có diện tích bằng nhau .
Ai tìm ra đáp án nhanh đúng và thật cụ thể thì tick cho người đó đầu tiên !!!!!
cho tứ giác ABCDnooij tiếp đường tròn tâm 0 . Gọi I là giao điểm hai đường chéo AC và BD , M là trung điểm của CD>Nối MI kéo dài cắt AB tại N .Từ B kẻ đường thẳng song songvới MN cắt AC ở E qua E kẻ đường thẳng song song với CD cắt BD ở F.
a) chứng minh tứ giác ABEF nội tiếp
b) chứng minh I là trung điểm của BF và AI.IE=IB.IB
c) chứng minh NA/NB=IA.IA/IB.IB
Cho tứ giác ABCD. Qua trung điểm K của đường chéo BD dựng đường thẳng song song với AC cắt AD tại E. Chứng minh rằng CE chia tứ giác ABCD thành hai phần có diện tích bằng nhau.
Bài 1: Cho tứ giác ABCD, E là trung điểm cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F. Qua F kẻ đường thẳng song song với BD cắt CD ở G. Qua G kẻ đường thẳng song song với AC cắt AD ở H.
a) Chứng minh tứ giác EFGH là hình bình hành.
b) Tứ giác ABCD cần thêm điều kiện gì để tứ giác EFGH là hình chữ nhật.
Các bạn giúp mình nhé, mình đang cần gấp. Cảm ơn các bạn nhiều.
Xét tg ABC có
EF//AC (gt) (1)
EA=EB (gt)
=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC
\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)
Xét tg BCD chứng minh tương tự ta cũng có GC=GD
Xét tg ADC có
GF//AC (gt) (3)
GC=GD (cmt)
=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC
\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)
Từ (1) và (3) => EF//GH (cùng // với AC)
Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)
=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Gọi O là giao của AC và BD
Ta có
FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)
Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)
\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)
Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau
Cho hình vuông ABCD. Gọi O là giao điểm hai đường chéo. Từ B kẻ đường thẳng song song với AC, cắt DC kéo dài tại E. Gọi F là trung điểm BE. Chứng minh:a, Tam giác BDE vuông cân.b, Tứ giác BOCF là hình vuông.c, Tứ giác CDOF là hình bình hành.d, OB.EF=OD.BFe, DC/DB=CE/BE.
Cho hình vuông ABCD. Gọi O là giao điểm hai đường chéo. Từ B kẻ đường thẳng song song với AC, cắt DC kéo dài tại E. Gọi F là trung điểm BE. Chứng minh:a, Tam giác BDE vuông cân.b, Tứ giác BOCF là hình vuông.c, Tứ giác CDOF là hình bình hành.d, OB.EF=OD.BFe, DC/DB=CE/BE.
Câu 5: Cho tứ giác ABCD. Đường thẳng qua A và song song với BC cắt BD tại E. Đường thẳng qua B và song song với AD cắt AC ở F. Chứng minh EF //DC.
Câu 6: Cho hình thang ABCD có AB là đáy nhỏ, gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự tị M, N. Chứng minh rằng OM = ON.
Cho hình thoi ABCD có 2 đường chéo cắt nhau tại E. Từ A kẻ đường thẳng song song với BD và cắt BC tại M.Từ B kẻ đường thẳng song song vs AC cắt AM tại F. Gọi H là chân đường vuông góc kẻ từ A xuống MC.
a) tứ giác AEBF là hình gì ? Vì sao ?
b)Chứng minh B là trung điểm của MC
c) Chứng minh AH*MC=BD*AC