cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim gia tri nho nhat cua bieu thuc M=1/16x+1/4y+1/z
cho x,y,z la cac so huu ti duong thoa man x+1/yz y +1/xz z+1/xy la cac so nguyen tim gia tri lon nhat cua bieu thuc A=x+y^2+z^3
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
cho x,y,z la cac so nguyen duong thoa man \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2015\)
tinh gia tri lon nhat cua bieu thuc P=\(\dfrac{xy}{x^3+y^3}+\dfrac{yz}{y^3+z^3}+\dfrac{zx}{z^{3+x^3}}\)
Cho cac so thuc duong x,y,z thoa man :\(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2=2015}\)
Tim ja tri nho nhat cua bieu thuc :\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
theo bđt cauchy schwars dạng engel ta có
\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\)
Dấu '=' xảy ra khi x=y=z
pt \(\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)
\(\Leftrightarrow3\sqrt{2}x=2015\)
\(\Leftrightarrow x=\dfrac{2015}{3\sqrt{2}}\)
vậy \(T_{min}=\dfrac{2015}{\sqrt{2}}\) khi \(x=y=z=\dfrac{2015}{3\sqrt{2}}\)
ko chắc đúng nha bạn :))
Cho x,y,z la cac so thuc duong thoa man x + y + z = 6
Tim GTNN cua bieu thuc P = ( x + y )/(xyz)
\(P=\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\)
Áp dụng Bunyakovsky dạng phân thức : \(\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)(1)
Ta có : \(\sqrt{z\left(x+y\right)}\le\frac{x+y+z}{2}\)( theo AM-GM )
=> \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=\left(\frac{6}{2}\right)^2=9\)
=> \(\frac{1}{z\left(x+y\right)}\ge\frac{1}{9}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)
Từ (1) và (2) => \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)
=> P ≥ 4/9
Vậy MinP = 4/9, đạt được khi x = y = 3/2 ; z = 3
cho xyz la cac so thuc thoa man y+z+1/x=x+z+2/y=x+y+2/z=1/x+y+z tinh gia tri bieu thuc A=2016.x+y^2017+z^2017
Câu hỏi của Phung Thi Thanh Thao - Toán lớp 7 - Học toán với OnlineMath
Tham khảo tính được x,y,z. Thay vào A
Cho x,y,z la cac so nguyen duong thoa man 1/x + 1/y + 1/z = 2015.
Tim GTLN cua bieu thuc P=x+y/x^2+y^2 + y+z/y^2+z^2 + z+x/z^2+x^2
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)
Cho cac so thuc x , y thay doi thoa man x + y = 2 . Tim gia tri nho nhat cua bieu thuc P = ( x4 + 1 )(y4 + 1) + 2013
ap dung bunhiacopki
\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)
do do P>=4+2013=2017
= xảy ra <=>x=y=1
tim gia tri nho nhat cua bieu thuc P=\(\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) trong do x,y la cac so duong thoa man \(x^2+y^2=1\)