Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Minh Hưng
Xem chi tiết
Lightning Farron
27 tháng 10 2016 lúc 12:04

Giả sử f(n) là số chính phương với mọi n nguyên dương

Đặt \(f\left(n\right)=n^3+On^2+Ln+M\)

Suy ra \(f\left(1\right)=1+O+L+M\);\(f\left(2\right)=8+4O+2L+M\);\(f\left(3\right)=27+9O+3L+M\);\(f\left(4\right)=64+16O+4L+O\) đều là số chính phương.

\(f\left(4\right)-f\left(2\right)\equiv2L\left(mod4\right)\)\(f\left(4\right)-f\left(2\right)\equiv0,1,-1\left(mod4\right)\)(do \(f\left(4\right),f\left(2\right)\)đều là số chính phương)

Do đó= \(2L\equiv0\left(mod4\right)\)

Suy ra \(2L+2\equiv2\left(mod4\right)\)

Mặt khác \(f\left(3\right)-f\left(1\right)\equiv2L+2\left(mod4\right)\)

=>Mâu thuẫn với điều giả sử (do \(f\left(3\right)-f\left(1\right)\equiv0,1,-1\left(mod4\right)\))

=>Đpcm

Vậy luôn tồn tại n nguyên dương sao cho \(f\left(n\right)=n^3+On^2+Ln+M\)không phải là số chính phương.

 

Tam Duong
Xem chi tiết
Tam Duong
Xem chi tiết
物理疾驰
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Yeutoanhoc
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Nguyễn Thị Trúc Mai
Xem chi tiết
LUU HA
Xem chi tiết
Tran Le Khanh Linh
15 tháng 8 2020 lúc 10:28

a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n

như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2

mà n2 và (n+1)2 là 2 số chính phương liên tiếp

=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)

Khách vãng lai đã xóa
Trần huy huân
Xem chi tiết
Xem chi tiết
Thu Huệ
6 tháng 3 2020 lúc 19:59

a, 3n + 2 - 2n + 2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 10.3n - 5.2n

= 10.3n - 10.2n - 1

= 10(3n - 2n - 1) chia hết cho 10

b, S = abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 11c

= 111(a + b + c)

= 3.37(a+b+c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên 

=> 3(a + b + c) chia hết cho 37

=> a + b + c chia hết cho 37

vì a;b;c là chữ số => a + b + c lớn nhất = 27

=> vô lí

vậy S không là số chính phương

Khách vãng lai đã xóa
Lê Thị Nhung
6 tháng 3 2020 lúc 20:08

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(3^{n+2}+3^n-2^n-2^{n+2}\)

=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)

=\(3^n.10-2^{n-1}.5.2\)

\(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10

suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

Khách vãng lai đã xóa
Hoàng hôn  ( Cool Team )
6 tháng 3 2020 lúc 20:09

a, 3n+2  - 2n+2  + 3n  - 2n 

= 3n (32  + 1) - 2n (22  + 1)

= 10.3n  - 5.2n 

= 10.3n  - 10.2n - 1

= 10(3n  - 2n) - 1 chia hết cho 10

Khách vãng lai đã xóa
Tom Boy
Xem chi tiết