Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô Mộ Hàn
Xem chi tiết
Song tử
Xem chi tiết
vũ tiền châu
14 tháng 6 2018 lúc 21:04

Ta có đăng thức <=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> a=b=c(ĐPCM)
^_^

Never_NNL
14 tháng 6 2018 lúc 21:05

 Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=> a=b=c (đpcm)

Ngô Thái Sơn
14 tháng 6 2018 lúc 21:05

Dễ mà. bạn học bđt cosi chưa

Nếu rồi thì ta có a^2 + b^2 >= 2ba (1); b^2 +c^2 >=2bc(2) ; c^2+a^2>=2ac(3) tất nhiên (1) , (2) và (3) xảy ra dấu bằng <=> a = b; b = c  và c =a

(1)+(2)+(3) ta có 2a^2+2b^2+2c^2>= 2ab+2bc+2ca => a^2 + b^2+c^2 >= ab + bc +ca. dấu = xảy ra <=> a = b = c

=> đpcm

Phùng Tiến Thành
Xem chi tiết
Hoàng Thị Lan Hương
29 tháng 6 2017 lúc 11:08

Từ \(a^2+b^2+c^2=ab+bc+ac\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}\Rightarrow a=b=c}\)

Vậy nếu \(a^2+b^2+c^2=ab+bc+ac\)thì \(a=b=c\)

Lyzimi
Xem chi tiết
Minh Triều
14 tháng 7 2015 lúc 7:52

nhân cả hai vế a2+b2+c2=ab+ac+bc cho 2 ta được:

2.(a2+b2+c2)=2.(ab+ac+bc)

<=>2a2+2b2+2c2=2ab+2ac+2bc

<=>2a2+2b2+2c2-2ab-2ac-2bc=0

<=>a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0

<=>(a-b)2+(a-c)2+(b-c)2=0

<=>a-b=0và a-c=0 và b-c=0

<=>a=b và a=c và b=c

=>a=b=c

Phạm Quang Trường
Xem chi tiết
Vi Phạm
9 tháng 6 2017 lúc 9:00

(a + b + c)^2=3(ab+ac+bc) 
<=>a^2 +b^2+c^2+2ab+2ac+2bc -3ab-3ac-3bc=0 
<=>a^2+b^2+c^2-ab-ac-bc=0 
<=> 2a^2+2b^2+2c^2-2ab-2ac-2bc=0 
<=> (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2) = 0 
<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0 
<=> a = b = c

TheRedSuns
9 tháng 6 2017 lúc 9:01

Vô đây tham khảo nhé 

Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 8 - Học toán với OnlineMath

Chúc bạn học giỏi

Good Luck

Thành viên
9 tháng 6 2017 lúc 9:06

Phạm Quang Trường

( a + b + c )2 = 3( ab + bc + ac ) 

<=>a2+b2+c2+2ab+2bc+2ac=3ab+3bc+3ac

<=>a2+b2+c2-ab-bc-ac=0

<=>2a2+2b2+2c2-2ab-2bc-2ac=0

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)=0

<=>(a-b)2+(b-c)2+(c-a)2=0

<=>a-b=0;b-c=0-;c-a=0

=>a=b=c

     
NHK
Xem chi tiết
Lưu Thị Thu Thủy
Xem chi tiết

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Nguyễn Văn Tuấn Anh
1 tháng 7 2019 lúc 10:54

TL:

1) 

Ta có:  \(2a^2+2b^2+2c^2=2ab+2ac+2bc\) 

          \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)  

        \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\) 

        \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) 

\(\Rightarrow\left(a-b\right)^2=0\) và\(\left(a-c\right)^2=0\)  và  \(\left(b-c\right)^2=0\) 

\(\Rightarrow a-b=0\) và \(â-c=0\) và  \(b-c=0\) 

=>a=b=c(đpcm)

          

Nguyễn Văn Tuấn Anh
1 tháng 7 2019 lúc 10:59

hình như câu B đề sai bạn nhé!

mk sửa lại ko biết có đúng ko:)

\(â^2+b^2+c^2=2\left(a+b+c\right)\)

hc tốt

Kim anh
Xem chi tiết
Đinh Đức Hùng
1 tháng 7 2017 lúc 10:11

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)00

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

l҉o҉n҉g҉ d҉z҉
1 tháng 7 2017 lúc 10:27

Ta có : a2 + b2 + c2 = ab + ac + bc 

=> a2 + b2 + c2 - ab - ac - bc = 0

=>  2a2 + 2b2 + 2c2 -2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

=> (a - b)2 + (a - c2 + (b - c)2 = 0

=> a = b = c (đpcm)

Xem chi tiết
Chu Công Đức
17 tháng 12 2019 lúc 22:04

\(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)(1)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}}\forall a,b,c\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\left(\forall a,b,c\right)\)(2)

Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow a=b=c\)

Vậy \(a=b=c\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
17 tháng 12 2019 lúc 20:32

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa