giải phương trình nghiệm nguyên 2x^2 +2y +1 = xy
giải phương trình nghiệm nguyên sau
\(2y^2x+x+y+1=x^2+2y^2+xy\)
>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0
>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)
có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong
Giải phương trình nghiệm nguyên x2− 2y2 − xy + 2x − y − 2 = 0.
\(x^2-2y^2-xy+2x-y-2=0\)
\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)
Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).
Ta có bảng giá trị:
x+y+1 | -3 | -1 | 1 | 3 |
x-2y+1 | -1 | -3 | 3 | 1 |
x | -10/3 (l) | -8/3 (l) | 2/3 (l) | 4/3 (l) |
y |
Vậy phương trình đã cho không có nghiệm nguyên.
Giải phương trình nghiệm nguyên: \(x^2y-5x^2-xy-x+y-1=0\)
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Giải phương trình nghiệm nguyên \(x^2+y^2+2x+2y=x^2y^2-1\)
\(\Leftrightarrow x^2+y^2+2xy+2x+2y+1=x^2y^2+2xy+1-1\)
\(\Leftrightarrow\left(x+y+1\right)^2=\left(xy+1\right)^2-1\)
\(\Leftrightarrow\left(xy+1\right)^2-\left(x+y+1\right)^2=1\)
\(\Leftrightarrow\left(xy+x+y+2\right)\left(xy-x-y\right)=1\)
Phương trình ước số cơ bản
Giải phương trình nghiệm nguyên sau:
\(x^2y+xy-2x^2-3x+4=0\)
Giải phương trình nghiệm nguyên:\(x^3+y^3+x^2y+y^2x=4\left(x^2+xy+y^2\right)+1\)
Đoán nguồn đi mấy ông :)))
giải phương trình nghiệm nguyên: x^2y^2-xy=x^2+2y^2
Đề sai đâu đó nhỉ, mình nghĩ là:
\(x^2y^2-xy=x^2+y^2\)
\(\Leftrightarrow x^2y^2=x^2+xy+y^2\)
\(\Leftrightarrow x^2y^2+xy=\left(x+y\right)^2\)
\(\Leftrightarrow xy\left(xy+1\right)=\left(x+y\right)^2\)
VP là số chính phương nên VT phải là số chính phương. Bạn hiểu ý mình rồi chứ :D
Giải phương trình nghiệm nguyên \(x^3+y^3+x^2y+y^2x=4\left(x^2+xy+y^2\right)+1\)
Đoán nguồn đi mấy ông :))