cho 1/a + 1/b + 1/c = 2 và a+b+c=a*b*c. tính gtbt: 1/a^2+1/b^2+1/c^2
Cho a+b+c=0,tính GTBT:
\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên!
Cho a+b+c=0 và a2+b2+c2=10. Tính gtbt
A = a2(1-a2) + b2(1-b2) + c2(1-c2)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow10+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-5\)
\(\Rightarrow\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right).0=25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=25\)
\(a^2+b^2+c^2=10\Leftrightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\)
\(\Leftrightarrow a^4+b^4+c^4+2.25=100\Leftrightarrow a^4+b^4+c^4=50\)
\(A=a^2\left(1-a^2\right)+b^2\left(1-b^2\right)+c^2\left(1-c^2\right)=a^2+b^2+c^2-\left(a^4+b^4+c^4\right)\)
\(A=10-50=-40\)
cho các số dương thỏa mãn (b+c)/a^2+(a+c)/b^2+(a+b)/c^2=2(1/a+1/b+1/c). tính gtbt: P= (a-b)^2017 + (b-c)^2017 + (c-a)^2017
Cho 3 số abc thỏa mãn :\(a^3+b^3+c^3=3abc\)a;b;c đôi một khác nhau
Tính GTBT:
\(B=\frac{1}{a^2+b^2+-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Cho a+b+c=0 và a2+b2+c2=1
Tính GTBT : M= a4+b4+c4
a = - (b + c)
<=> a2 = b2 + c2 + 2bc
<=> a2 - b2 - c2 = 2bc
<=> a4 + b4 + c4 + 2(b2 c2 - a2 b2 - a2 c2) = 4b2 c2
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 = 0,5
Vậy rõ rồi mà bạn. Chỉ cần chuyển vế với nhân 2 là được cái cuối mà
1 .Cho x+y=a và xy=b , tính giá trị của biểu thức :
a. x^2+y^2
b. x^3+y^3
c. x^4+y^4
d. x^5+y^5
2 . a.Cho x+y=1 tính GTBT x^3+y^3+xy
b. cho x-y=1 tính GTBT x^3-y^3-xy
c. cho x+y=a , x^2+y^2=b tính x^3+y^3
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
\(1.\)
\(a)\)
\(x^2+y^2\)
\(=\left(x+y\right)^2-2xy\)
\(=a^2-2b\)
\(b)\)
\(x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=a[\left(x+y\right)^2-3xy]\)
\(=a\left(a^2-3b\right)\)
\(=a^3-3ab\)
\(c)\)
\(x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
\(d)\)
\(x^5+y^5\)
\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)
\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)
\(=a^5-5a^3b+5ab^2\)
tính GTBT
P=\(\frac{1}{ab}\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}+\frac{1}{bc}\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}}+\frac{1}{ac}\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}\)
Cho \(a+b+c=1\) Tính GTBT
\(A=\frac{a-b}{b+1=2c}+\frac{3b+4c}{c-a+2}-\frac{c}{3-2a-b}\)
a)Cho a+b+c=1 và 1/a+1/b+1/c =0.Tính a^2+b^2+c^2
b)Cho a+b+c=2014 và 1/a+b + 1/a+c + 1/b+c=1/2014.Tính S=a/b+c + b/a+c + c/a+b
\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)
Mà \(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)
\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)
\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)
\(=2014.\frac{1}{2014}-3=1-3=-2\)
Vậy.....................