Tìm nghiệm nguyên dương của phương trình: x+y+z=xyz
tìm nghiệm nguyên dương của phương trình : x+y+z=xyz
Tìm nghiệm nguyên dương của phương trình x + y + z = xyz
Ta gọi phương trinh của x+Y=Z = XYZ LÀ (2) .Do vai trò bình đẳng của x,y,z trong phương trình, trước hết ta xét x bé hơn hoặc = y < hoặc = z
VÌ x,y,z nguyên dương nên xyz khác 0 , do x , hoặc = y ,học = z => xyz= x+y+z < hoặc = 3z => xy <3 => x thuộc {1;2;3}
Nếu xy=1 => x=y=1 . Thay vào (2) ta có : 2+z =z ( vô lý)
nẾU XY=2 , Do x < hoặc = y nên x=1,y=2 . tHAY VÀO (2) ta có ; z=3
NÊú xy =3 , do x , hoặc = y nên x=1, y=3. Thay vào (2) ta có , z=2
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1;2;3)
TK MK NHA!!
tìm nghiệm nguyên dương của phương trình x+y+z=xyz
vế phải bạn ơi phương trình thì phải có dấu bằng chứ
Tìm nghiệm nguyên dương của phương trình x+y+z = xyz
Vì x,y,z nguyên dương
Ta giả sử 1<x<y<z
Từ x+y+z=xyz =>x+y+z/xyz=xyz/xyz
=>x/xyz=y/xyz=z/xyz
=>1/yz=1/xz=1/xy=1
Ta có : 1/yz+1/xz+1/yz<1/^2+1/x^2+1/x^2=3/x^2
=>1<3/^2=>x^2<3
Mà x dương => x=1
Thay vào x,y,z ta đc
1+y+z=1yz
yz-(1=y+z)=0
=> (yz-y)-(z-1)-2=0
=>y(z-1)-(z-1)=2
(z-1)*(y-1)=2 (1)
Theo giả sử 1<y<z => z-1>0 và y-1>0
Từ (1) ta có
TH1:
z-1=1=>z=2
y-1=2=>y=3
TH2:
z-1=2=>z=3
y-1=1=>y=2
Vậy có hai cặp nghiệm nguyê thỏa mãn (x,y,z)=(1,2,3);(1,3,2)
Tương tự bạn xét tiếp các trườn hợp như 1<y<z<x và 1<z<y<x
tìm nghiệm nguyên dương của phương trình x+y+z=xyz
Ta biện luận theo z nguyên dương
* Nếu z>=3
=> x+y+1\(\ge\)3xy nên x+y+1 -3xy\(\ge\)0 => x(1-y) +(y(1-x)+(1-xy)\(\ge\)0 (1)
Do x, y nguyên dương ta có x,y\(\ge\)1
=> 1-y\(\le\)0 và 1-x\(\le\)0 và 1-xy\(\le\)0
=> x(1-y) +(y(1-x)+(1-xy)\(\le\)0 (2)
Từ (1) và (2) => Tổng bằng 0 khi:
{x(1-y)=0
{y(1-x)=0
{(1-xy)=0
=> x=1, y=1
Vậy nghiệm là (1;1;3)
** Nếu z=2
=> x+y+1=2xy
=> x(y-1) + y(x-1)=1
Tổng 2 số nguyên không âm bằng 1 chỉ là một trong 2 cặp 0,1 hoặc 1,0 nên :v
{(x(y-1)=0
{ y(x-1)=1 => x=2, y=1
hoặc
{(x(y-1)=1
{ y(x-1)=0 => x=1, y=2
Vậy có 2 cặp nghiệm là (2;1;2) và (1;2;2)
*Nếu z=1
=> x+y+1=xy
=> (x-1)(y-1)=2
=> {x-1=1
{y-1=2 => x=2, y=3
Hoặc
{x-1=2
{y-1=1 => x=3, y=2
Vậy có 2 cặp nghiệm (2,3,1) và (3;2;1)
Tìm nghiệm nguyên dương của phương trình x+y+z =xyz
bạn học đến nghiệm rồi à???? mk mới học đến cộng trừ đa thức
tìm nghiệm nguyên dương của phương trình x+y+z=xyz
tìm nghiệm nguyên dương của phương trình x+y+z=xyz
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
tìm nghiệm nguyên dương của phương trình x+y+z=xyz
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Tích nha, thanks bạn nhìu.