Tìm các số a,b thỏa mãn a^2018+ b^2018 = a^2017+b^2017= a^2016+ b^2016
Cho hai số a, b dương thỏa mãn:\(a^{2016}+b^{2016}=a^{2017}+b^{2017}=a^{2018}+b^{2018}\)
Tính giá trị biểu thức: \(a^{2017}+b^{2017}\)
Tim số a,b thỏa mản a^2018+b^2018=a^2017+b^2017=a^2016+b^2016
Cho hai số a,b thỏa mãn a2016 + b2016 = a2017 + b2017 = a 2018 + b2018.
Tính giá trị biểu thức P = a2017 + b2017 + (a-b)2017
cho a,b,c thỏa mãn : a/2016=b=2017=c/2018
CMR: ( a-c )^3=8(a-b)^2(b-c)
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)
\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)
\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)
\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)
\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)
A = 2015/2016 + 2016/2017 + 2017/2018 và B = (2015 + 2016 + 2017)/(2016 + 2017 + 2018)
So sánh A và B:
A=2015/2016+2016/2017+2017/2018
B=2015+2016+2017/2016+2017+2018
giúp mk nha!!!!!!!
A<B(2015/2016<2015;2016/2017<2016;2017/2018<2017)
Cho các số dương a, b thỏa mãn:
\(a^{2016}+b^{2016}=a^{2017}+b^{2017}=a^{2018}+b^{2018}\)
Hãy tính giá trị của \(S=a^{1000}+b^{1000}\)
so sánh: A=2016/2017+2017/2018 và B=2016+2017/2017+2018
Tính A và B rồi ta đi so sánh:
A = \(\frac{2016}{2017}\) + \(\frac{2017}{2018}\) = \(1.999008674\)
B = \(\frac{2016+2017}{2017+2018}\) = \(0.9995043371\)
Mà 1.999008674 > 0.9995043371
Nên: A > B
Giải như bạn Trần Nhật Quỳnh thà không làm còn hơn.
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)