chứng minh rằng (53n+2+32n+3) chia hết cho 11.
Giúp mình với!!! Cảm ơn các bạn nhiều :)
Chứng minh rằng: Số 11...1(n chữ số 1)-10n chia hết cho 9
Các bạn giúp mình với mình cảm ơn rất nhiều
a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1)
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1
.....
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3)
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1)
= 9.A + n
=>8n + 11111...1= 9A +9n chia hết cho 9
b.11111111....1 (gồm 27 số 1)
= 1111...100.....0 + 11111...10000...0 + 1111...1
-------------------------- ----------------------- -----------
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1
=111111111 x (10^18 + 10^9 +1)
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9)
10^18 chia 3 dư 1
10^9 chia 3 sư 1
=> 10^18 + 10^9 +1 chia hết cho 3
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)
1. a,b,c thuộc N
Chứng minh rằng : 11a + 22b + 33c chia hết cho 11
2. Chứng minh rằng :2+ 22 + 23+.....+2100chia hết cho 3
3.Chứng minh rằng: Số abcabc chia hết cho 7, 11, 13
Xin các bạn giải giúp mình. Cảm ơn
1) Ta có : 11a + 22b + 33c
= 11a + 11.2b + 11.3c
= 11.(a + 2b + 3c) \(⋮\)11
=> 11a + 22b + 33c \(⋮\)11
2) 2 + 22 + 23 + ... + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)
= 6 + 22.6 + ... + 298.6
= 6.(1 + 22 + .. + 298)
= 2.3.(1 + 22 + ... + 298) \(⋮\)3
=> 2 + 22 + 23 + ... + 2100 \(⋮\)3
3) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc .7. 13.11 (1)
= abc . 7 . 13 . 11 \(⋮\)7
=> abcabc \(⋮\)7
=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11
=> abcabc \(⋮\)11
=> Từ (1) ta có : abcabc = abc . 7.11.13 \(⋮\) 13
=> => abcabc \(⋮\)13
1
.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\)
\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\)
hc tốt
1.Chứng minh rằng:
a.(2^10+1)^10 chia hết cho 125
b.10^2018+5^3 chia hết cho 9
2.Chứng minh rằng:A=(x+3)(x+7)(x+11) chia hết cho 3 với x thuộc N
Hãy giúp mk với mk cần gấp nhé,mk cảm ơn các bạn rất nhiều
1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10 chia hết cho 125 = 102510 chia hết cho 125
Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b
1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9
2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24
Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc
Giải giúp mình với cho một số có ba chữ số aba chứng minh rằng aba chia hết cho 7 thì a+b cũng chia hết cho 7 và ngược lại
Cảm ơn các bạn nhiều
707 nhé
707 : 7 = 101
7 + 0 = 7 : 7 = 1
aba chia hết cho 7.Vậy a x100+b x10+a chia hết cho 7 tương đương với a x101+b x10 cũng chia hết cho 7.
ax101+bx10 tương đương với ax10+bx10+ax91 chia hết cho 7=10x(a+b)+ax91 mà 91 chia hết cho 7 nên suy ra a chia hết cho 7,10x(a+b) cũng chia hết cho 7 và từ đó suy ra a+b chia hết cho 7
Chứng minh rằng :
3n+3+3n+1+2n+3+2n+2 chia hết cho 6
Các bạn giúp mình bài với . Mình mới lập nick nên mong các bạn giúp đỡ . Nếu ko phiền và ko chê mình thì kb với mình nhé . Bạn nào giải đc thì mình tick cho . Cảm ơn các bạn rất nhiều !
3n + 3 + 3n + 1 + 2n + 3 + 2n + 2
= 3n.33 + 3n.3 + 2n.23 + 2n.22
= 3n.(27 + 3) + 2n.(8 + 4)
= 3n.30 + 2n.12
= 3n.5.6 + 2n.2.6
= 6.(3n.5 + 2n.2) \(⋮\) 6
3n+3+3n+1+2n+3+2n+2
=3n+1.(32+1)+2n+2.(2+1)
=3n=1.2.5+2n+1.3
=3.2.3n.5+2.3.2n+1
=3.2.(3n.5+2n+1) chia hết cho 6
Chứng tỏ rằng :
A. Số abcabc chia hết cho 11.
B. Số (ab-ba) chia hết cho 9.
C. Số (ab+ba) chia hết cho 11.
Mong các bạn giúp đỡ mình nha. Nhanh nhanh giúp mình nhé vì ngày mai mình phải nộp rồi. Cảm ơn nhiều 😊
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
Các bạn giúp mình với !!
Câu 1 :Cho x;y nguyên. Chứng minh rằng : Nếu (6x +11y) chia hết cho 31 thì khi và chỉ khi (x+7y) chia hết cho 31
Câu 2 : Tìm các số abc có 3 chữ số khác nhau. Sao cho 3a+5b=8c
Các bạn giúp mình với. Mình cảm ơn nhiều ạ
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
ta co:(6x+11y) chia het cho 31
<=>6x+11y+31y cung chia het cho 31
<=>6x+42y chia het cho 31
<=>6(x+7y) chia het cho 31 (nhan phan phoi)
vi 6(x+7y) chia het cho 31 => x+7y theo toan phan 6(x+7y) chia het cho 31
2)
3a+5b = 8c => 3a-3c = 5c-5b => 3(a-c) = 5(c-b)
đã có a # c # b; 3 và 5 nguyên tố cùng nhau, từ (*) ta phải có:
a-c chia hết cho 5 và c-b chia hết cho 3 cũng thấy -9 ≤ a-c ≤ 9
a-c = -5 ; (*) => c-b = -3 => c-a = 5 và b-c = 3
cộng lại theo vế => b-a = 8 => a = 1, b = 9 => c = 4 ; ta được số 194
a-c = 5; (*) => c-b = 3
cộng lại => a-b = 8 => a = 8, b = 0, c = 3 hoặc a = 9, b = 1, c = 4
ta có thêm 2 số: 803 và 914
Chứng minh rằng:
a) Cho a và b là số nguyên không đối nhau. Chứng minh rằng ( a mũ 2 + a.b + 2.a + 2.b ) chia hết cho ( a + b )
b) Chứng tỏ rằng tổng của ba số nguyên liên tiếp thì chia hết cho 3
Các bạn giúp mình với các bạn ghi đầy đủ các bước nha. Mình xin chân thành cảm ơn
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3
\(a^2+a.b+2a+2b\)
\(=\left(a^2+a.b\right)+\left(2a+2b\right)\)
\(=\left(a.a+a.b\right)+\left(2a+2b\right)\)
\(=a.\left(a+b\right)+2.\left(a+b\right)\) (Theo tính chất phân phối)
Vì a.(a+b) chia hết cho (a+b), 2.(a+b) chia hết cho (a+b) nên a.(a+b)+2.(a+b) chia hết cho a+b hay \(a^2+ab+2a+2b\)chia hết cho \(a+b\)
bài1 chứng tỏ rằng tổng của 3 só tự nhiên liên tiếp chia hết cho 3 và tổng cuả 4 số tự nhiên liên tiếp thì không chia hết cho 4
bài 2 chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6 ) thì chia hết cho 2
Các bạn giải rõ ràng cả hai bì giúp mình với nhé.Mình cảm ơn các bạn nhiều
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n