cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm AB BC AC CD AD .
a) Tứ giác MNPQ là hình gì
b) gọi M' là trung điểm của DB AD=6 AB=8 . CHO AM'=1/2 DB. Tinh QM'
1) Cho hình thang ABCD( AB > AD). Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD theo thứ tự M,N
a) CMR: OM = ON
b) CMR: DMBN là hình gì ? Vì sao ?
c) CMR: AN// CM
2) Cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB,BC,CA,AD.
a) CMR: tứ giác MNPQ là hình bình hành
b) Gọi M trung điểm DB. biết AD=6, AB=8. Cho AM= 1/2 DB. Tính QM ?
3) Cho Hình bình hành ABCD( AB>AD) . Kẻ AE, CF lần lượt vuông góc vs BD tại E,F.
a) CMR: AEDF là hình bình hành
b) AE kéo dài cắt CD tại K, CF kéo dài cắt AB tại H. Chứng tỏ rằng AC, BD,HK đồng quy.
Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho AM=1/2DB
. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.
Cho tứ giác ABCD có AD=BC. Gọi M,N,P,Q lần lượt là trung điểm của AB, AC, CD, BD.
a) Tứ giác MNPQ là hình gì?
b) Tứ giác ABCD cần thêm điều kiện gì để MNPQ là hình vuông?
a, Xét tg ACD có :
AM=MB (gt) và DQ=OQ (gt)
=> MQ là đtb
=> MQ//AD và MQ=1/2AD
Xét tg ACD có :
AN=NC (gt) và DP=PC (gt)
=> NP là đtb
=> NP//AD và NP=1/2AD
Từ trên suy ra : MNPQ là hình thoi
b, dễ , không biết nói mình
nhớ k nha bạn
bạn ơi , nếu như bạn thì chỉ có 2 cặp cạnh đối song song và bằng nhau mà ra hình thoi thì siêu thật
Cho tứ giác ABCD gọi M,N,P lần lượt là trung điểm AB,AC,CD,DB
a, chứng minh MNPQ là hình bình hành
b, Các cạnh AF và BC của tứ giác ABCD cần có điều kiên gì để tứ giác MNPQ là hình chữ nhật
Cho tứ giác ABCD có ADC+BCD=90° và AD=BC . Gọi M, N, P, Q lần lượt là trung điểm của AB, AC, CD, BD. a) Chúng minh rằng tứ giác MNPQ là hình bình hành. b) đường thẳng PM cắt BC tại E. tính góc PEC. c) chứng minh diện tích MNPQ≥ (AB-CD)²/8. đẳng thức xảy ra khi nào?
PLEASE!❤️🙏
cho hình thang ABCD với(AB // CD ) .gọi M,N,P,Q lần lượt là trung điểm các cạnh AB,AC,CD,DB
a)hãy cm tứ giác MNPQ là hbh
b) tìm đk của hình thang ABCD để tứ giác MNPQ trở thành hình thoi , hcn ,hình vuông
a) Xét tam giác \(ABC\):
\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)
suy ra \(MN=\frac{1}{2}BC,MN//BC\).
Xét tam giác \(DBC\):
\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)
suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).
Suy ra \(PQ=MN,PQ//MN\)
nên \(MNPQ\)là hình bình hành.
b) - \(MNPQ\)là hình thoi.
\(MNPQ\)là hình thoi suy ra \(MN=NP\).
Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)
do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân.
- \(MNPQ\)là hình chữ nhật.
\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).
Chứng minh tương tự ý a) ta cũng có \(NP//AD\)
suy ra \(BC\perp AD\).
- \(MNPQ\)là hình vuông.
\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật.
Cho tứ giác ABCD. gọi M,N,P,Q lần lượt là trung điểm của AB,AC,DC,DB. Chứng minh tứ giác MNPQ là hình bình hành. Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình thoi, hình chữ nhật, hình vuông
cho tứ giác ABCD có AB = a,CD=c và AD=BC; góc ABC + góc DCB = 90 độ .gọi M,N,P,Q lần lượt là trung điểm của AB,AC,CD,BD.
a,MNPQ là Hình Vuông
b,Chứng minh diện tích tứ giác MNPQ lớn hơn hoặc bằng (a-c)^2chia 8
1/ Vẽ hình ...
2/Bài làm như sau:
Bạn cần thêm điều kiện AB = AD .
Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông
Suy ra : SMNPQ=NQ22SMNPQ=NQ22
Mặt khác, ta luôn có : KQ+QN≥KNKQ+QN≥KN ⇒QN≥|KN−KQ|=12|c−a|⇒QN≥|KN−KQ|=12|c−a|
⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28
Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD