A=19
so sánh biểu thức a và b biết:
A=19^18 + 1/ 19^19 + 1
B= 19^17 +1 / 19^18 +1
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{19^{18}+1}{19^{19}+1}< \frac{19^{18}+1+18}{19^{19}+1+18}=\frac{19^{18}+19}{19^{19}+19}=\frac{19\left(19^{17}+1\right)}{19\left(19^{18}+1\right)}=\frac{19^{17}+1}{19^{18}+1}=B\)
\(\Rightarrow\)\(A< B\) ( đpcm )
Vậy \(A< B\)
Chúc bạn học tốt ~
A=\(-\dfrac{68}{123}\)x\(-\dfrac{23}{79}\)
B=\(-\dfrac{14}{79}\)x\(-\dfrac{68}{7}\)x\(-\dfrac{46}{123}\)
C=\(-\dfrac{4}{19}\)x\(-\dfrac{3}{19}\)x\(-\dfrac{2}{19}\) ... \(\dfrac{2}{19}\)x\(\dfrac{3}{19}\)x\(\dfrac{4}{19}\)
a)So sánh A,B,C
b)Tính B:A
a) Ta có:
\(A=\dfrac{-68}{123}\cdot\dfrac{-23}{79}=\dfrac{68}{123}\cdot\dfrac{23}{79}\)
\(B=\dfrac{-14}{79}\cdot\dfrac{-68}{7}\cdot\dfrac{-46}{123}=-\left(\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\right)\)
\(C=\dfrac{-4}{19}\cdot\dfrac{-3}{19}\cdot...\cdot\dfrac{0}{19}\cdot...\cdot\dfrac{3}{19}\cdot\dfrac{4}{19}=0\)
Suy ra A là số hữu tỉ dương, B là số hữu tỉ âm và C là 0.
Vậy A > C > B.
b) Ta có:
\(\dfrac{B}{A}=\dfrac{-\left(\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\right)}{\dfrac{68}{123}\cdot\dfrac{23}{79}}=-\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\cdot\dfrac{123}{68}\cdot\dfrac{79}{23}\)
\(\dfrac{B}{A}=-\dfrac{14\cdot68\cdot46\cdot123\cdot79}{79\cdot7\cdot123\cdot68\cdot23}=-\left(2\cdot2\right)=-4\)
Vậy B : A = -4
So sánh a và B biết:
A=19^30+5/19^31+5
B=19^31+5/19^32+5
Ta có 1930<1931
\(\left(\frac{5}{19}\right)^{31}< \left(\frac{5}{19}\right)^{32}\)
5=5
công vế theo vế ta có
\(19^{30}+\left(\frac{5}{19}\right)^{31}+5< 19^{31}+\left(\frac{5}{19}\right)^{32}+5\)
Vậy A<B
Giúp tớ:Ngày 19-8-2002 vào thứ 2. Tính xem ngày 19-8-1945 vào ngày nào trong tuần ?
A=15/19 . 17/23 + 15/19 . 19/23 - 15/19 . 13/23 = ?
\(A=\frac{15}{19}\left(\frac{17}{23}+\frac{19}{23}-\frac{13}{23}\right)=\frac{15}{19}\left(\frac{17+19-13}{23}\right)=\frac{15}{19}\cdot\frac{23}{23}=\frac{15}{19}.1=\frac{15}{19}\)
a+(a+1)+(a+2)+...+19=19
a+(a+1)+...+18+19=19
<=> a+(a+1)+...+18=0
<=>a+(a+1)+...+18=(a+18).n:2
<=>a+(a+1)+...++18=(a+18).n
mà n là số số hạng nên n khác 0
=> a+18=0
<=>a=-18
Cho tổng A gồm 2016 số hạng A=\(\frac{1}{19^1}+\frac{2}{19^2}_{ }+\frac{3}{19^3}+..................+\frac{n}{19^n}+.....+\frac{2016}{19^{2016}}\)
Hãy so sánh A^2016 và A^2015
Ai giải được cho 100 tick
Không cần giải cũng biết đáp án:
Nếu A là số dương thì A^2016>A^2015
Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015
k nha
Cho tổng A gồm 2014 số hạng.
\(A=\frac{1}{19}+\frac{2}{19^2}+\frac{3}{19^3}+...+\frac{2014}{19^{2014}}\)
Tính A
\(A=\frac{1}{19}+\frac{2}{19^2}+...+\frac{2014}{19^{2014}}\)
\(\Rightarrow19A=1+\frac{2}{19}+\frac{3}{19^2}+...+\frac{2014}{19^{2013}}\)
\(\Rightarrow19A-A=\left(1+\frac{2}{19}+\frac{3}{19^2}+...+\frac{2014}{19^{2013}}\right)-\left(\frac{1}{19}+\frac{2}{19^2}+...+\frac{2014}{19^{2014}}\right)\)
\(\Rightarrow18A=1+\left(\frac{1}{19}+\frac{1}{19^2}+...+\frac{1}{19^{2013}}\right)-\frac{2014}{19^{2014}}\)
\(\Rightarrow18A=1+\frac{1-\frac{1}{19^{2013}}}{18}-\frac{2014}{19^{2014}}\)
\(\Rightarrow A=\frac{1+\frac{1-\frac{1}{19^{2013}}}{18}-\frac{2014}{19^{2014}}}{18}\)
Vậy...
A=19^5+2015/19^5-1 và B=19^5+2014/19^5-2
\(A=\frac{19^5-1+2016}{19^5-1}=1+\frac{2016}{19^5-1}\)
\(B=\frac{19^5-2+2016}{19^5-2}=1+\frac{2016}{19^5-2}\)
\(19^5-1>19^5-2\Rightarrow\frac{2016}{19^5-1}<\frac{2016}{19^5-2}\Rightarrow1+\frac{2016}{19^5-1}<1+\frac{2016}{19^5-2}\)
=> A<B
So sánh a = 19 mũ 10 + 5/19^10 - 8 và b = 19 mũ 21 + 6/19^21 - 7
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo)