chứng minh răng 1 số chia hết cho 9 thì tổng các chữ số của nó chia hết cho 9
chứng minh rằng: hiệu của một số và tổng các chữ số của nó thì chia hết cho 9 ?
Lời giải:
Gọi số tổng quát có dạng \(\overline{a_1a_2a_3....a_n}\)
Xét hiệu của số đó và tổng các chữ số của nó:
\(\overline{a_1a_2a_3....a_n}-(a_1+a_2+a_3+....+a_n)\\ =(a_1.10^n+a_2.10^{n-1}+.....+a_n)- (a_1+a_2+...+a_n)\\ =a_1(10^n-1)+a_2(10^{n-1}-1)+...+a_{n-1}(10-1)\)
\(=a_1.\underbrace{999...9}_{n}+a_2.\underbrace{999...9}_{n-1}+....+a_{n-1}.9\vdots 9\)
chứng minh số có tổng các chữ số chia hết cho ̣9 thì số đó sẽ chia hết cho ̣9
Gọi số cần tìm là \(\overline{abcd}\) theo bài ra ta có :
a + b + c + d \(⋮\) 9
mặt khác ta lại có vì 10 \(\equiv\) 1 (mod 9) nên :
103.a \(\equiv\) a (mod 9)
102.b \(\equiv\) b (mod 9)
10.c \(\equiv\) c (mod 9)
d \(\equiv\) d ( mod 9)
Cộng vế với vế ta có :
103a+ 102b + 10c + d \(\equiv\) a + b + c + d (mod 9)
⇔ \(\overline{abcd}\) \(\equiv\) a + b + c + d ( mod 9)
mà a + b + c + d \(⋮\) 9
\(\Leftrightarrow\) \(\overline{abcd}\) ⋮ 9 (đpcm )
Em phải sử dụng đồng dư thức để chứng minh nhé em
Gọi số cần tìm là A với A chia hết cho 9
Do đó A = 9k với k thuộc N.
Đặt A = abcd...
Do đó tổng các chữ số của a là (a + b + c + d + ...) = 9m với m thuộc N chia hết cho 9
=> ĐPCM
Chứng minh rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9
=> Nếu số đó chia 9 dư k
=> Tổng các chữ số chia 9 dư k
Vậy hiệu của chúng có số dư khi chia cho 9 là: k - k = 0
Vậy chia hết cho 9
Chứng minh rằng hiệu của 1 số vs tổng các chữ số của nó chia hết cho 9
Gọi số đó là 10^n*Xn+10^(n-1)*Xn-1+10^(n-2)*Xn-2+....... ta co :
10^n*Xn+10^(n-1)*Xn-1+10^(n-2)*Xn-2+....... - ( X1+X2+....+Xn-1+ Xn)=
=Xn(10^n-1)+Xn-1[10^(n-1)-1]+.....+X2(...
ta thấy rõ rằng tất cả các số hạng của tổng này đều chia hết cho 9
Chứng tỏ : Hiệu của một số và tổng các chữ số của nó chia hết cho 9
Bài chêp đủ phải là có n chữ số 1
cộng n chữ số 1 thì =n chứng tỏ A=8n+n=9n
đương nhiên nó chia hết cho 9.
a sorry bạn , mình ghi biểu thức mà làm tùm lum luôn à
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
Chứng minh rằng hiệu của 1 số tự nhiên n và tổng các chữ số của nó chia hết cho 9
Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath
chứng minh hiệu của một số bất kì với tổng các chữ số của nó là một số chia hết cho 9
Gọi abc là 1 số tự nhiên (có thể ab;abc;abcd;adbc;......)
Ta có
abc-(a+b+c)=100a+10b+c-(a+b+c)=99a+9b+0 chhia hết cho 9
=>đpcm
abc-a-b-c=100a+10b+c-a-b-c=99a+9b chia hết 9 (\->)\đpcm
Bài 7:Cho A = 1 + 11 + 111 + 1111 + … + 111…11( Số hạng cuối được viết bởi 30 chữ số 1) A chia cho 9 có số dư là….Một số chia hết cho 9 thì tổng các chữ số của nó chia hết cho 9.\
1
1+1=2
1+1+1=3
.......
1+1+...+1(có 30 số 1)=30
ta có
1+2+3+.....+30=465
mà 4+6+5=15 chia 9 dư 6 nên A chia cho 9 dư 6
k mình nhé vì mình chắc chắn đó bởi vì cô dạy mình bài đó chiều nay mà