kết quả của dãy số
1/2+1/4+1/8+1/16+...+1/256+1/512
các bn giúp mình nha
Kết quả của dãy tính:
1/2 + 1/4 + 1/8 + 1/16 + … 1/256 + 1/512 bằng…
Vậy dãy số đó là:
1/2 + 1/4 + 1/8 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 =
256/512 + 128/512 + 64/512 + 32/512 + 16/512 + 8/512 + 4/512 + 2/512 + 1/512 511/512
Đáp số: 511/512
kết quả của dãy tính 1/2+1/4+1/8+1/16+...1/256+1/512 bằng..,
1/2 + 1/4 =3/4
1/2+1/4 +1/8=7/8
1/2+1/4+1/8+1/16=15/16
....tương tự ta có
1/2 +1/4+1/8+1/16+...+1/256+1/512=511/512
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{256}{512}+\frac{128}{512}+\frac{64}{512}+\frac{32}{512}+\frac{16}{512}+\frac{8}{512}+\frac{4}{512}+\frac{2}{512}\)
\(=\frac{511}{512}\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)
\(Ax2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}\)
\(Ax2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\right)\)
\(A=1-\frac{1}{512}\)
\(A=\frac{511}{512}\)
Kết quả của dãy tính: 1/2+1/4+1/8+1/16+...+1/256+1/512=?
\(=1-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{4}\)\(+\frac{1}{4}\)\(+\)...\(+\)\(\frac{1}{256}\)\(-\frac{1}{512}\)
\(=1-\frac{1}{512}\)
\(=\frac{511}{512}\)
kết quả của dãy tính:
1/2+1/4+1/8+1/16+....+1/128+1/256+1/512=.......?
1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + 1 / 32 + 1 / 64 + 1 / 128 + 1 / 256 + 1 / 512 = 511 / 512 .
dãy số đó là:
1/2+1/4+1/8+1/32+1/64+1/128+1/128+1/256+1/512=511/512
a ) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
b) 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/29
Các bn giúp mk nha ! À lưu ý : Dấu / nghĩa là dấu gạch của phân số nha .
a ) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
Đạt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
A x 2 = 2 x ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256)
A x 2 = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
Lấy A x 2 - A ta có :
A x 2 - A = 1 + 1/2 + ..... + 1/128 - 1/2 + 1/4 + ........ + 1/256
A x ( 2 - 1 ) = 1 - 1/ 256
A = 255/256
b) 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/ 3 + 1/9 + 1/27 + 1/81 + 1/243
Lấy A x 3 - A ta có :
A x 3 - A = 1 + 1/3 + 1/9 +..... + 1/243 - 1/3 + 1/9 +........+ 1/243 + 1/29
A x ( 3 - 1 ) = 1 - 1/29
A x2 = 28/29
A = 28/29 : 2 ( tự tính
Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{256}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{128}\)
\(\Rightarrow2A-A=1-\frac{1}{256}\)
\(\Rightarrow A=\frac{255}{256}\)
tính nhanh :1/2 + 1/4 + 1/8 + 1/16 +1/32 + 1/64 + 1/128 + 1/256
giúp mình nha ^_^
A= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A= 2(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256)
= 1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=>A = 2A-A =1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 -1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128 - 1/256
=1-1/256
=255/256
1/2+1/4+1/8=1/16+1/32+1/64+1/128+1/256
giải giúp mình nha mình sẽ tick cho
Sửa đề :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
Bài làm :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(=\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{128}-\frac{1}{256}\)
\(=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)
viết kết quả bài toán sau:
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/152.
Đặt A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
A=1/21+1/22+1/23+1/24+1/25+1/26+1/27+1/28
1/2A=1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29
A-1/2A=(1/2+1/22+1/23+1/24+1/25+1/26+1/27+1/28)-(1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29)
1/2A=1/2-1/29
A=2(1/2-1/29)
A=1-1/28
A=28-1
1/2-1/4-1/8-1/16-................-1/1024
nhập kết quả p số tối giản
nhanh lên nha mình cần gấp
\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-.............-\frac{1}{1024}\)
=> 2S = \(2x\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..........-\frac{1}{1024}\right)\)
2S = \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..........-\frac{1}{512}\)
2S - S = \(\left(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-........-\frac{1}{512}\right)\)- \(\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-........-\frac{1}{1024}\right)\)
=> S = \(1+\frac{1}{1024}=\frac{1024}{1024}+\frac{1}{1024}=\frac{1025}{1024}\)
Chắc chắn 100%
Đặt \(S=\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(2S=2\times\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)\(=1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{512}\)
\(2S-S=\left(1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\right)-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)
\(\Rightarrow S=1+\frac{1}{1024}=\frac{1025}{1024}\)