Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha Trang
Xem chi tiết
Nhật Hạ
13 tháng 4 2019 lúc 18:02

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

nguyễn dương diệu anh
13 tháng 4 2019 lúc 18:26

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{97.99}\)

\(=\frac{2}{2}.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{97.99}\right)\)

\(=1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=1.\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(=1.\frac{33-1}{99}\)

\(=\frac{32}{99}\)

...................................TK CHO MK NHÉ.........................

%$H*&
13 tháng 4 2019 lúc 19:03

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

Dương Thị Thùy Trang
Xem chi tiết
Nguyễn Hưng Phát
24 tháng 2 2016 lúc 12:56

B=\(\frac{2}{1.3}+\frac{2}{3.5}+..........+\frac{2}{99.101}\)

B=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...........+\frac{1}{99}-\frac{1}{101}\)

B=\(1-\frac{1}{101}\)

B=\(\frac{100}{101}\)

FHhcy04
Xem chi tiết
Lê Phương Uyên
Xem chi tiết
ST
27 tháng 2 2017 lúc 16:13

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}=\frac{49}{50}\)

B = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)

\(2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\right)\)

\(2.\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)

\(\frac{2}{2}\left(\frac{1}{3}-\frac{1}{39}\right)\)

= \(\frac{4}{13}\)

C = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)

= \(3\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\right)\)

= \(3.\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)

= \(\frac{3}{3}\left(\frac{1}{4}-\frac{1}{76}\right)\) 

\(\frac{9}{38}\)

o0o I am a studious pers...
27 tháng 2 2017 lúc 16:12

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

Duy Nguyễn Văn Duy
Xem chi tiết
Akai Haruma
6 tháng 12 2023 lúc 23:47

Lời giải:

$A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}$

$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}$

$=1-\frac{1}{99}=\frac{98}{99}$

Nguyễn An Vy
Xem chi tiết
Dương Lam Hàng
5 tháng 4 2018 lúc 14:03

Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)

\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)

          \(=1-\frac{1}{2006}=\frac{2005}{2006}\)

 \(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)

      \(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)

        \(=1-\frac{1}{2017}=\frac{2016}{2017}\)

Bùi Xuân Thảo Quỳnh
5 tháng 4 2018 lúc 14:07

N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006

   = 1/1 - 1/2006

   = 2006/2006 - 1/2006

   =  2005/2006

ngothithoi
Xem chi tiết
Luis Suárez
10 tháng 7 2018 lúc 9:22

a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\cdot\frac{2004}{2005}=\frac{1002}{2005}\)

Lê Thị Hải Anh
10 tháng 7 2018 lúc 9:21

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\) Từ đó áp dụng tính câu a

\(\frac{2}{1.3}=\frac{1}{1}-\frac{1}{3}\) Áp dụng tính câu b

Han Sara ft Tùng Maru
10 tháng 7 2018 lúc 9:28

a) \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2017\times2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

b) \(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2003\times2005}\)

\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\times\frac{2004}{2005}\)

\(=\frac{1002}{2005}\)

Hok tốt #

Hoàng Anh
Xem chi tiết
Nguyễn Anh Kim Hân
19 tháng 4 2016 lúc 14:30

A = 2/3 x 5+ 2/5 x 7 + 2/7 x 9 + ... + 2/97 x 99

A = 2/3 - 2/99

A = 64/99

A=2/3x5 + 2/5x7 + 2/7x9 + ......+ 2/97x99 = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99 
A= 1/3 - 1/99 = 96/3.99 = 32/99 

        Đ/S:tích

Nguyễn Anh Kim Hân
19 tháng 4 2016 lúc 14:38

A = 2/3 x 5 + 2/ 5 x 7 + 2/7 x 9 + ... + 2/97 x 99

A = 1/3 - 1/99

A = 32/99

Dương Diễm Quỳnh
Xem chi tiết
Nguyễn Hưng Phát
26 tháng 3 2016 lúc 19:28

M=\(\frac{2}{3\times5}+\frac{2}{5\times7}+.............+\frac{2}{97\times99}\)

=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..........+\frac{1}{97}-\frac{1}{99}\)

=\(\frac{1}{3}-\frac{1}{99}\)

=\(\frac{32}{99}\)

Thắng Nguyễn
26 tháng 3 2016 lúc 19:29

\(\Leftrightarrow M=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{97}-\frac{2}{99}\)

\(\Rightarrow M=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow M=2\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(\Rightarrow M=2\times\frac{32}{99}\)

\(\Rightarrow M=\frac{64}{99}\)

Lê Hồng Ngọc
26 tháng 3 2016 lúc 19:31

M=1/3-1/5+1/5-1/7+...+1/97-1/99

=1/3-1/99

=32/99

Đảm bảo đúng