Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Hoàng Thuận
Xem chi tiết
Satoh Kaori
Xem chi tiết
Trần Thu Phương
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Đỗ Thị Minh Ngọc
26 tháng 3 2022 lúc 15:57

c)Gọi I là giao điểm của BM và AC.

Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)

Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB

⇒MC+MB<MI+MB+IC

⇒MC+MB<IB+IC (2)

d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)

Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC

⇒ IB+IC<IA+IC+AB

⇒IB+IC<AC+AB (4)

e)Từ (2) và (4) suy ra MB+MC<AB+AC

f)Áp dụng bđt tam giác, ta có:

AB+AI > BI = MB+MI, CI + MI > MC

=> AB + AI + CI + MI > MB + MI + MC

Mà AI + CI = AC

=> AB + AC > MB + MC [1]

Áp dụng bđt tam giác, ta cũng có:

BA + BC > MA + MC [2],

CA + CB > MA + MB [3]

Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC

=> MA + MB + MC < AB + AC + BC (đpcm)

 

Đỗ Thị Minh Ngọc
26 tháng 3 2022 lúc 15:59

a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)

b)

*Xét ΔABM ta có: AM + BM > AB (1)

*Xét ΔACM ta có: AM + CM > AC (2)

*Xét ΔBMC ta có: BM + CM > BC (3)

Từ (1); (2); (3)

=> AM + BM + AM + CM + BM + CM > AB + AC + BC

=> 2. AM + 2. BM + 2. CM > AB + AC + BC

=> 2. (AM + BM + CM) > AB + AC + BC

Hay: 2. (MA + MB + MC) > AB + BC + CA

Trần Phan Ngọc Lâm
Xem chi tiết
Đỗ Thị Minh Ngọc
26 tháng 3 2022 lúc 15:58

a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)

b)

*Xét ΔABM ta có: AM + BM > AB (1)

*Xét ΔACM ta có: AM + CM > AC (2)

*Xét ΔBMC ta có: BM + CM > BC (3)

Từ (1); (2); (3)

=> AM + BM + AM + CM + BM + CM > AB + AC + BC

=> 2. AM + 2. BM + 2. CM > AB + AC + BC

=> 2. (AM + BM + CM) > AB + AC + BC

Hay: 2. (MA + MB + MC) > AB + BC + CA

c)Gọi I là giao điểm của BM và AC.

Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)

Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB

⇒MC+MB<MI+MB+IC

⇒MC+MB<IB+IC (2)

d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)

Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC

⇒ IB+IC<IA+IC+AB

⇒IB+IC<AC+AB (4)

e)Từ (2) và (4) suy ra MB+MC<AB+AC

f)Áp dụng bđt tam giác, ta có:

AB+AI > BI = MB+MI, CI + MI > MC

=> AB + AI + CI + MI > MB + MI + MC

Mà AI + CI = AC

=> AB + AC > MB + MC [1]

Áp dụng bđt tam giác, ta cũng có:

BA + BC > MA + MC [2],

CA + CB > MA + MB [3]

Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC

=> MA + MB + MC < AB + AC + BC (đpcm)

 

Trần Hà Phương
Xem chi tiết
Trần Thùy Dương
2 tháng 8 2018 lúc 12:38

P/s. sửa đề : Chứng minh : \(2\left(AM+BM+CM\right)>AB+AC+BC\)

Xét tam giác AMB ta có :

\(AM+BM>AB\)( bất đẳng thức trong tam giác ) (1)

Xét tam giác AMC ta có :

\(AM+CM>AC\)(bất đẳng thức tam giác )(2)

Xét tam giác BMC ta có :

\(BM+CM>BC\)(bất đẳng thức tam giác )(3)

Từ(1) ;(2) và (3)

\(\Rightarrow AM+BM+AM+MC+BM+MC>AB+AC+BC\)

\(\Rightarrow2AM+2BM+2CM>AB+AC+BC\)

\(\Rightarrow2\left(AM+BM+CM\right)>AB+AC+BC\) (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 8 2017 lúc 15:44

Bách Bách
Xem chi tiết
Lê Quốc Vương
Xem chi tiết