Tập hợp các số nguyên x thỏa mãn \(\left(2x-5\right)\left(x+1\right)< 0\) là :......
Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất.
Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)
Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)
Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)
Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)
Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y
Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...
Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...
Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn
Tập hợp số nguyên x thỏa mãn \(\left(\left|x-2013\right|+2014\right)\times\left(x^2+5\right)\times\left(9-x^2\right)=0\) là S {........}
Tập hợp các số nguyên x thoả mãn \(\frac{\left(x-1\right)\left(x+5\right)}{\left(x-1\right)\left(2x+6\right)}\)=1
Tập hợp các số nguyên x thõa mãn \(\frac{\left(x-1\right)\left(x+5\right)}{\left(x-1\right)\left(2x+6\right)}=1\)
\(\frac{\left(x-1\right)\left(x+5\right)}{\left(x-1\right)\left(2x+6\right)}=1\) <=> (x - 1)(x + 5) = (x - 1)(2x + 6)
<=> x + 5 = 2x + 6 (cùng chia cả 2 vế cho x - 1)
<=> 0 = x + 1 (cùng bớt cả 2 vế đi x và 5)
<=. x = 0 - 1
<=> x = -1
Tập hợp các số nguyên x thoả mãn \(\frac{\left(x-1\right)\left(x+5\right)}{\left(x+1\right)\left(2x+6\right)}\)=1 la
tập nghiệm của bất pt
a) \(\left|4x-8\right|\le8\)
b) \(\left|x-5\right|\le4\). (số nghiệm nguyên|)
c) \(\left|2x+1\right|< 3x\) ( giá trị nguyên x thỏa mãn [-2017;2017]
d) \(\left|x+1\right|+\left|x\right|< 3\)
e) \(\left|2-x\right|+3x-1\le6\)
a, \(\left|4x-8\right|\le8\)
\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)
\(\Leftrightarrow16x^2-64x+64\le64\)
\(\Leftrightarrow16x^2-64x\le0\)
\(\Leftrightarrow16x\left(x-4\right)\le0\)
\(\Leftrightarrow0\le x\le4\)
b, \(\left|x-5\right|\le4\)
\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)
\(\Leftrightarrow x^2-10x+25\le16\)
\(\Leftrightarrow x^2-10x+9\le0\)
\(\Leftrightarrow1\le x\le9\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
c, \(\left|2x+1\right|< 3x\)
TH1: \(x\ge-\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow2x+1< 3x\)
\(\Leftrightarrow x>1\)
\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
TH2: \(x< -\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow-2x-1< 3x\)
\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)
Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
d, \(\left|x+1\right|+\left|x\right|< 3\)
\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)
\(\Leftrightarrow\left|x^2+x\right|< 4-x\)
Xét hai trường hợp để phá dấu giá trị tuyệt đối
e, Tương tự câu d
Câu 1: tập hợp các giá trị nguyên của x thỏa mãn \(\left(-x-4^2\right)-2\left|4+x\right|=0\)0 là...........
Câu 2 : Số cặp ( x;y) nguyên thỏa mãn \(x^2+y^2=13\) là.............
giải chi tiết cho mình nhé
Tập hợp các giá trị nguyên của x thỏa mãn \(\left|x-3\right|^2+\left|x-3\right|=0\) là {}
Ta có : |x - 3|2 luôn luôn lớn hơn hoặc bằng 0 với mọi x
|x - 3| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà |x - 3|2 + |x - 3| = 0
Suy ra : \(\hept{\begin{cases}\left|x-3\right|^2=0\\\left|x-3\right|=0\end{cases}}\) \(\Rightarrow\left|x-3\right|=0\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
chuyển vế đi=> X=3 hoặc X=2
Tập hợp có 2 phần tử 3;2
/x-3/2+/x-3/=0 (1)
+/ Với x\(\ge\)3 => x-3\(\ge\)0 => (1) <=> (x-3)2+x-3=0 <=> (x-3)(x-3+1)=0
<=>(x-3)(x-2)=0 => x=2 và x=3. Mà x\(\ge\)3 => Chọn x=3
+/ Với x<3 => x-3<0 => (1) <=> (3-x)2+3-x=0 <=> (3-x)(3-x+1)=0
<=>(3-x)(4-x)=0 => x=3 và x=4. Mà x<3 => Không có giá trị phù hợp.
ĐS: x=3
Tập hợp các giá trị nguyên x thỏa mãn \(\left(x+\frac{5}{4}\right)\times\left(x-\frac{9}{7}\right)
ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)\left(x-\frac{9}{7}\right)\)
suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm
x+5/4>0suy ra x>0-5/4 suy ra x>-5/4
x-9/7<0 suy ra x<9/7+0 suy ra x<9/7
-5/4<x<9/7