Biết x,y là các số nguyên
Giá trị nhỏ nhất của A= (2x-1)2014+(3y-4)2016 là
Biết x, y là các số nguyên:
Giá trị nhỏ nhất của A =(2x-1)^2014+(3y-4)^2016 là bao nhiêu?
Các số mũ của nó đều mũ chẵn nên lũy thừa sẽ dương với mọi x, y.
Suy ra cả tổng lớn hơn hoặc bằng 0. Vậy GTNN của tổng là 0 khi cả hai lũy thừa bằng 0. Cả 2 lũy thừa bằng 0 khi và chỉ khi... tự tính tiếp.
Tìm giá trị nhỏ nhất của các biểu thức:
a) P= (2x - 1)2014+|2x-y+4| - 2016
b) Q= |x - 8|+|x + 3|-15
a) Có: \(\hept{\begin{cases}\left(2x-1\right)^{2014}\ge0\forall x\\\left|2x-y+4\right|\ge0\forall x;y\end{cases}}\)
\(\Rightarrow\left(2x-1\right)^{2014}+\left|2x-y+4\right|\ge0\forall x;y\)
\(\Rightarrow P\ge-2016\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-1\right)^{2014}=0\\\left|2x-y+4\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\2x-y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\2x-y=-4\end{cases}\Rightarrow}y=5}\)
vậy minP=-2016 khi x=1/2; y=5
b) có:\(\left|x-8\right|+\left|x+3\right|=\left|8-x\right|+\left|x+3\right|\ge\left|8-x+x+3\right|=\left|11\right|=11\)
\(\Rightarrow Q\ge11-15=-4\)
dấu "=" xảy ra khi: (x-8)(x+3)>=0
Suy ra: 8 >= x >= -3
vậy minQ=-4 khi 8 >= x >= -3
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
a) Tìm 3 số x, y, z biết x/3 = y/4; y/3 = z/5 & 2x-3y+z=6
b) Tìm giá trị nhỏ nhất của biểu thức P = /x-2015/ + /x-2016/ khi x thay đổi
Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)
Quy đồng : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và \(2x-3y+z=6\)
Áp dung tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)
\(\Rightarrow\begin{cases}\frac{x}{9}=3\Rightarrow x=3.9=27\\\frac{x}{12}=3\Rightarrow x=3.12=36\\\frac{x}{20}=3\Rightarrow x=3.20=60\end{cases}\)
Vậy .......................
Ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{3}=\frac{y}{4}.\frac{1}{3}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{3}.\frac{1}{4}=\frac{z}{5}.\frac{1}{4}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)
Từ (1) và (2); ta được:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\Rightarrow x=3.9=27\)
\(\Rightarrow y=3.12=36\)
\(\Rightarrow z=3.20=60\)
\(Ta\) \(có:\)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và \(2x-3y+z=6\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\Rightarrow\frac{x}{9}=3\Rightarrow x=3.9=27\)
\(\frac{y}{12}=3\Rightarrow y=3.12=36\)
\(\frac{z}{20}=3\Rightarrow z=3.20=60\)
Vậy : \(x=27;y=36;z=60\)
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???
Tìm gia trị nhỏ nhất
A = 4 + ( x-2 ) 2016
B = ( 5 + y )2014 + ( 2x - 1 )2016 -7
Tìm gia trị nhỏ nhất
A = 4 + ( x-2 ) 2016
B = ( 5 + y )2014 + ( 2x - 1 )2016 -7
Tìm gia trị nhỏ nhất
A = 4 + ( x-2 ) 2016
B = ( 5 + y )2014 + ( 2x - 1 )2016 -7
Tìm số nguyên x , y biết :
A = ( 2x - 1 )2014 + ( 3y - 4 ) 2016