Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huỳnh Bá Lộc
Xem chi tiết
Lê Nhật Khôi
19 tháng 3 2019 lúc 12:56

Chỉ cần áp dụng một vài BĐT thôi :)

Có: \(x^2+y^2\ge2xy\)

\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\)

\(\Leftrightarrow\frac{1}{2}\ge x^2+y^2\)

Áp dụng các BĐT trên vào CM Bđt cần Cm:

\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+y^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\)

Vậy ...  đpcm

Nguyễn Quang Đức
Xem chi tiết
Trần Minh Hoàng
30 tháng 1 2021 lúc 15:37

Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).

Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).

Vậy x = y

Vinne
Xem chi tiết
Nguyễn Huỳnh Bá Lộc
Xem chi tiết
Lê Nhật Khôi
19 tháng 3 2019 lúc 12:48

Thật sự ra mục đích bài này đi chứng minh biểu thức trong ngoặc là scp

Đây là dề thi HSG toán cấp tỉnh Đồng Tháp

Có: \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}\)

\(=\sqrt{\left(x^2+xy+yz+xz\right)\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}\)

Sau đó thực hiên phân tích đa thức thành nhân tử mỗi ngoặc

\(=\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)là số hữu tỉ

Vậy

Câu số 1b đề thi hsg

Chào anh từ  huyện Cao Lãnh 

Kamka Lanka
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết