Chứng minh A>1/2 biết A =1/12+1/13+1/14+1/15+...+1/22
Chứng minh rằng: A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có :
A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\) \(\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)
\---------------------------------------------/
11 số 1/22
Từ trên ta có đpcm
biết B=1/12+1/13=1/14+...+1/22. chứng tỏ B<1/2
Hãy chứng tỏ các tổng các ps sau > 1/2
A=1/12+1/13+1/14+1/15+...+1/22
B=1/10+1/11+1/12+1/13+...+1/99+1/100.Chứng tỏ rằng B>1
C=1/5+1/6+1/7+....+1/16+1/17.Chứng tỏ rằng C<2
Lời giải:
a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)
Vậy: \(A>\frac{1}{2}\)
b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)
\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{}\text{}\text{}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)
=> \(B\text{}\text{}\text{}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)
Vậy: \(B>1\)
c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)
Vậy: \(C< 2\)
Chúc bạn học tốt!Tick cho mình nhé!
B=1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20+1/21+1/22
Chứng tỏ B>1/2
\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}\)có 11 số hạng
Ta có: \(\frac{1}{12}>\frac{1}{22}\)
\(\frac{1}{13}>\frac{1}{22}\)
.............
\(\frac{1}{22}=\frac{1}{22}\)
\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)
chứng minh rằng tổng sau lớn hơn 12:
B=1/12+1/13+1/14+....+1/22
Bài 1: Chứng minh rằng
1 phần 12 + 1 phần 13 + 1 phần 14 +...+ 1 phần 22 > 1 phần 2
Bài 1: Chứng minh rằng
1 phần 12 + 1 phần 13 + 1 phần 14 + … + 1 phần 22 > 1 phần 2
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có: \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}\) (vì từng phân số lớn hơn \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
Mà \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)
Chúc bn học tốt
Chứng tỏ rằng
a) A=1/12+1/13+1/14+⋯+1/22>1/2
b) B = 1/10+1/11+1/12+⋯+1/99+1/100>1
Chứng tỏ rằng: A= 10/27+9/16+11/34 < 2
B=1/12+1/13+1/14+...+1/22 > 1/2
\(A=\frac{10}{27}+\frac{9}{16}\frac{11}{34}\)
Ta có: \(\frac{10}{27}< >\backslash\left(\frac{9}{16}< >\backslash\left(\frac{11}{34}< >Nên\backslash\left(A< >b\right)\right)\right)\backslash\left(B=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}\right)\)
\(B>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=11.\frac{1}{22}=\frac{1}{2}\)
Nên \(B>\frac{1}{2}\)