Cho \(B=\frac{1}{2\left(n-1\right)^2+3}\)
Tìm số nguyên n để B có GTLN
Cho \(B=\frac{1}{2\left(n-1\right)^2+3}\)tìm số nguyên n để B có GTLN
De B lon nhat
=> 2(n-1)2+3 nho nhat
Vi 2(n-1)2\(\ge\)0 => (n-1)2\(\ge0\)=> \(n\ge1\)
=> 2(n-1)2+3\(\ge3\)
=> Min B =3 khi n=1
Sao mk chỉ xem đc có 1 câu thui vậy...
sai rùi phải là cực sai lun, cách làm sai mà đáp số cũng sai đúng là ngu người
Chỉ có cách làm có í đúng nhưng chưa dc
1,TÌm GTNN của P biết P=\(\frac{12}{x^2+\left|y-13\right|+14}\)
2,Tìm số nguyên n để P=\(\frac{n+2}{n-5}\)có giá trị lớn nhất
3,Cho n là số tự nhiên có 2 chữ số.Tìm n biết n+4 và 2n đều là số chính phương
4,cho a,b,c khác 0 và a+b+c khác 0 thỏa mãn
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)
Tính B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)\)
5, So sánh \(\left(-32\right)^{27}\)và\(\left(-18\right)^{39}\)
6,Tìm GTLN của S=\(\frac{x^2+2016}{x^2+2015}\)
GIẢI DÙM MK VS MK ĐANG CẦN GẤP
MƠN MN TRƯỚC
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
5,
Ta so sánh 3227 và 1839
3227 =(25)27 = 2135 < 2156 = (24)39 = 1639 < 1839
Vậy (-32)27 > (-18)39
6, làm tương tự 2
Phần nguyên của số hữu tỉ x được kí hiệu [x] là số nguyên lớn nhất không vượt quá x. Cho:
A=\(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)và B=\(\left[\frac{n}{3}\right]+\left[\frac{n+1}{3}\right]+\left[\frac{n+2}{3}\right]\) với \(n\in N\)
Tìm n để: a, A chia hết cho 2
b, B chia hết cho 3
Xét các dạng của n trong phép chia cho 2 và 3
2k , 2k+1
3p, 3p+1. 3p+2
1/tìm số n nguyên dương thỏa mãn
\(\sqrt{\left(3+2\sqrt{2}\right)^n}+\sqrt{\left(3-2\sqrt{2}\right)^n}=6\)
2/ cho a, b là các số dương thỏa mãn \(1\le a\le b\le2\)
tìm GTLN của \(A=\frac{a}{b}+\frac{b}{a}\)
1) Cho P = n4+4 . Tìm n thuộc N để P là số nguyên tố
2) Tính P = \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+2019}\right)\)
3)
a)Tìm GTNN của biểu thức A =\(\sqrt{x^2+2x+2}+\sqrt{y^2-4y+5}\)
b)Tìm GTLN của biểu thức B = 2x+3y biết x2+y2 = 1
Giúp mình với
Cảm ơn
Tìm số nguyên N để Q có giá trị là số nguyên
a,P = \(\frac{3n+2}{n-1}\)
b, Q = \(\frac{3.\left|n\right|+1}{3.\left|n\right|-1}\)
cho \(A=\frac{4n+1}{2n+3}\)\(\left(n\in Z\right)\)
a, tìm n để A có GT nguyên
b, Tìm n để A có GTLN ,GTNN
Cho B = \(\frac{1}{2\left(n-1\right)^2+3}\). Tìm số nguyên n để B có giá trị lớn nhất.
Cho B = \(\frac{1}{2\left(n-1\right)^2+3}\), Tìm số nguyên n để B có giá trị lớn nhất.
Ta có 2.(n-1)^2 >/ 0 với mọi n
=>2.(n-1)^2+3 >/ 3 với mọi n
=>1/2.(n-1)^2+3 </ 1/3 với mọi n
do đó GTLN của B=1/3
Dấu "=" xảy ra<=>2.(n-1)^2=0<=>n=1
Vậy...
nho tik
Người ta trả lời xg rùi bảo làm đc à....badboy à wên hotboy