(a+b+c)^2 -2 .(a+b+c).(a+b) (a+b)^2
>>>>M.n giúp mk vs nha
Mk có bài khó ,ai bt lm giúp mk nha :D .Mk đang cần gấp
Cho a,b,c>0 ,CMr : 1<a/(a+b) +b/(b+c) +c/(c+a) <2 Cho x,y<0 CMr : x^2/y^2+y^2/x^2 > hoặc =x/y+y/xGiải giúp tôi vs m.n :'(
Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)
Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn
chứng minh rằng:
a) (a-1)(a-2) + (a-3)(a+4) - (2a^2 + 5a - 34)= -7a +24
b) (a+c)(a-c) - b(2a-b) - (a-b+c)(a-b-c) = 0
c) (a - b)(a^2 +ab+b^2) - (a+b)(a^2-ab+b^2) = - 2b^3
m.n giúp mk vs, mk đang rất gấp...tks trc nạ.!
cho tam giác ABC có sin A+ sin B + sin C = a + b nhân cos A/2 nhân cos B/2 nhân cos C/2. khi đó tổng a+b = ?
(m.n ơi giúp mk vs mk cần gấp mk cảm ơn nhiều)
\(Cho\)a,b,c thuộc R
chứng minh \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)>=\frac{3\left(a+b+c\right)^2}{4}\)
m.n giúp mk vs nha ạ !!!!!!!!!11
cho đa thức f(x)=ax^2+bx+c tính a,b,c biết G(0)=4 G(1)=9 G(2)=14
M.n giúp mk vs nha mk sẽ tk
Ta có : G(0) = a.02 + b.0 + c = 4
=> c = 4
G(1) = a.12 + b.1 + c = 9
=> a + b + c = 9
Mà c = 4 => a + b = 9 - 4 = 5 (1)
G(2) = a.22 + b.2 + c = 14
=> 4a + 2b + c = 14
Mà c = 4 > 4a + 2b = 14 - 4 = 10 => 2a + b = 5 (2)
Từ (1) và (2) trừ vế cho vế :
(a + b) - (2a + b) = 5 - 5
=> -a = 0 => a = 0
Thay a = 0 vào (1), ta được : 0 + b = 5 => b = 5
Vậy ...
\(G\left(0\right)=4\Rightarrow a.0^2+b.0+c=c=4\)
\(G\left(1\right)=9\Rightarrow a.1^2+b.1+c=a+b=9\)
\(G\left(2\right)=14\Rightarrow a.2^2+b.2+c=4a+2b=2.\left(2a+b\right)=14\)
\(\Rightarrow2a+b=7\)
Ta có: 2a + b - (a + b) = a = -2
=> b = 9 - (-2) = 11
Vậy a = -2; b = 11; c = 0
phân tích thành nhân tử:a*(b^2+c^2+b*c)+b*(c^2+a^2+a*c)+c*(a^2+b^2+a*b) . Giải giúp mk vs nha
a(b^2 +c^2 + bc) + b(c^2 + a^2 +ac) + c(a^2 + b^2 + ab)
= a.b^2 + a.c^2 + b.c^2 + b.a^2 + c.a^2 + c.b^2 + 3abc
= (a.b^2 + b.a^2 +abc) + ( a.c^2 + c.a^2 + abc) + (c.b^2 + b.c^2 + abc)
= ab(a+b+c) + ac(a +b +c) + bc(a+b+c)
=(a+b+c)(ab+ac+bc)
1. CMR : a+b+c=0 thi a^4+b^4+c^4=2(ab+bc+ca)^2
2. CMR : a^2/b^2 + b^2/c^2 + c^2/a^2 >= c/b + b/a + a/c
M.N GIUP MK VS , TOI NAY MK PHAI NOP ROI
1)a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1)
CẦn chứng minh:
2(a^4 + b^4 + c^4) = (a² + b² + c²)²
<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)
<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> Đpcm
2Quy đồng hết lên là ra thui :) . Đặt thế này cho dễ : x = a/b , y = b/c , z = c/a => xyz = 1
BĐT cần Cm <=> x² + y² + z² ≥ 1/x + 1/y + 1/z
<=> x² + y² + z² ≥ xy + yz + zx ( BĐT quen thuộc đây mà )
<=> 2(x² + y² + z² ) - 2(xy + yz + zx) ≥ 0
<=> (x - y)² + (y - z)² + (z - x)² ≥ 0 ( Luon dung ) => DPCM
Dấu = xảy ra <=> x = y = z <=> a = b = c
Vậy a²/b² + b²/c² + c²/a² ≥ c/b + b/a + a/c . Dấu = xảy ra <=> x = y = z <=> a = b = c
- - - - - - - - - - - - -- - - - - -
Bạn nào bt thì giúp mk vs nha....mk mơn nhìu
a2+ab+b23=25⇒a2+ab+b2325=1a2+ab+b23=25⇒a2+ab+b2325=1
Tương tự :c2+b239=1;a2+ac+c216=1c2+b239=1;a2+ac+c216=1
Áp dụng t/c dãy tỉ số bằng nhau , ta có
c2+b239=a2+ac+c216=2c2+ac+b23+a225c2+b239=a2+ac+c216=2c2+ac+b23+a225
⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23
⇒ab=2c2+ac⇒ab+ac=2c2+2ac⇒a(b+c)=2c(a+c)⇒2ca=b+ca+c (đpcm)
Cho a,b,c là độ dài 3c của 1 tam giác.
a) Cmr: abc >= (a+b-c)(b+c-a)(c+a-b)
b) Biết tam giác đó có chu vi bằng 2. Tìm GTNN của P= 4(a^3 + b^3 + c^3) + 15abc.
Câu a mk làm đc rồi nha, m.n giúp mk câu b với.