cho a+b+c+ab+ac+bc+6
tim gia tri nho nhat cua (a^3)/b+(b^3)/c+(c^3)/a
cho tam giác ABC vuông tại C có BC=a, AC=b, AB=c. tìm gia tri nho nhat cua P= (a+b)(b+c)(c+a) : abc
1. cho cac so thuc a,,b,c > 0 .Gia tri nho nhat cua bieu thuc T = \(\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\)
Áp dụng bđt AM - GM:
\(T=\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}=\left(\dfrac{1}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\right)+\dfrac{8}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.3=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).
Đẳng thức xảy ra khi a = b = c.
Vậy Min T = \(\dfrac{10}{3}\) khi a = b = c.
tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\)voi a+b+c=1
ta có: \(a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\)vì (a-b)^2>=0 => \(a^2+ab+b^2\ge\frac{3}{4}\left(a+b\right)^2\Leftrightarrow\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}}{2}\left(a+b\right)\)
gọi là A đi. tương tự thì \(A\ge\frac{\sqrt{3}}{2}\left(a+b+b+c+a+c\right)=\frac{\sqrt{3}}{2}.2.1\left(a+b+c=1\right)=\sqrt{3}\Rightarrow MinA=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\)
cho cac so a, b, c thoa man: a(a-b)+b(b-c)+c(c-a)=0
tim gia tri nho nhat cua bieu thuc: A=a^3+b^3+c^3-3abc+3ab-3c+5
tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=1
giúp mình với
cho a,b,c >0 thoa man dieu kien a^2 +b^2 +c^2 = 1
tinh gia tri nho nhat cua bieu thuc A= ab/c + bc/a + ca/b
Cho a,b,c la do dai 3 canh cua 1 tam giac . Tim gia tri nho nhat cua P = \(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
cho a,b,c la cac so thuc duong thoa man a+b+c=3. tim gia tri nho nhat cua
P=\(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\)
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
Cho cac so a, b, c thoa man a2 +b2+c2( <=) 2 .Tim gia tri nho nhat cua bieu thuc S=2015ca-ab-bc