1/3+1/6+1/10+...+2/x(x+1)=1999/2001
1/3+1/6+1/10+......+2/x[x+1]=1999/2001
Tìm X biết 1/3+1/6+1/10+...+2/Xx(X x 2)=1999/2001
tìm x thuộc n biết 1/3+1/6+1/10+...+2/x.(x+1)=1999/2001
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{2001}:2=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}=\frac{1}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\frac{1}{6}+\frac{1}{12}+..+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:\frac{1}{2}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
tìm x thuộc N biết 1/3+1/6+1/10+...+2/x.(x+1)=1999/2001
tìm STN x biết rằng : 1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 1999/2001
(*) <=> 1\6 + 1\12 +.. + 1\x.(x+1) = 2009\(2011.2)
ma
1\2.3 =1\2-1\3
1\3.4=1\3-1\4
...............
1\x(x+1)= 1\x-1\(x+1)
cong tung ve ta dc
Vt= 1\2- 1\(x+1) =2009\(2.2011)
<=> 2011\(2.2011) -2009\(2.2011) =1\(x+1)
<=> 1\2011 =1\(x+1)
=> x=2010
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 1999/2001
nhân 1/2 vào 2 vế ta được vế trái là :
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{x-1}{2.\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{x-1}{\left(x+1\right)}=\frac{1999}{2001}\)
suy ra : 2001x - 2001 = 1999x + 1999
2x = 1999 + 2001 = 4000
=> x = 2000
Tìm x thuộc N
1\3+1\6+1\10+.....+2\x.(x+1)=1999\2001
tìm x
1/3 + 1/6 + 1/10 + ..... + 2/ x(x+1) = 1999/2001
1/2x[1/3+1/6+1/10+....2/x.(x+1)]=1999/2001x1/2
1/2x3+1/3x4+....+1/x(x+1)=1999/4002
1/2-1/3+1/3-1/4+....+1/x-1/x+1=1999/4002
1/2-1/x+1=1999/4002
1/x+1=1/2-1999/4002
1/x+1=1/2001
=>x+1=2001
x=2001-1
x=2000
Tìm số tự nhiên x biết rằng :1/3+1/6+1/10+...+2/x(x+1)=1999/2001
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}:2\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}:2=\frac{1}{2001}\Rightarrow x+1=2001\Rightarrow x=2000\)
Tìm x ;
1/3 + 1/6 + 1/10 + ..... + 1/x2+x = 1999/2001