Chứng minh rằng: Nếu 5x-12y chia hết cho 17 thì 18x+y chia hết cho 17
Chứng minh rằng nếu 5x+3y chia hết cho 17 thì 8x-2y chia hết cho 17
Ta có 5x + 3y \(⋮\)17
=> 5(5x + 3y) \(⋮\)17
=> 25x + 15y \(⋮\)17
=> 17(x + y) + 8x - 2y \(⋮\)17
Nhận thấy 17(x + y) \(⋮\)17
=> 8x - 2y \(⋮\)17 (đpcm)
Chứng minh rằng nếu 2x+3y chia hết cho 17 thì 9x+5x cũng chia hết cho 17 và ngược lại
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại
tk nha bạn
thank you bạn
(^_^)
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại
Cho biểu thức A = 5x + 2y và B = 9x + 7y
Chứng minh rằng nếu các số nguyên x, y thoả mãn 5x + 2y chia hết cho 17 thì 9x + 7y cũng
chia hết cho 17.
Vì A chia hết cho 17
=> 7A = 35x + 14y cũng chia hết cho 7
mặt khác ta có 2B = 18x + 14y
Xét 7A - 2B
= 35x + 14y - 18x - 14y
= 17x chia hết cho 17
mà 7A chia hết cho 17
=> 2B phải chia hết cho 17
mà 2 ko chia hết cho 17 => B chia hết cho 17 ( đpcm )
Cho A=5x+2y; B=9x+7y(x,y thuộc Z). Chứng minh rằng A chia hết cho 17 thì B chia hết cho 17
Chứng minh rằng nếu 3x + 2y chia hết cho 17 thì 10x + y cũng chia hết cho 17 .
Ta có
3x + 2y chia hết cho 17
=> 9(3x+2y) chia hết cho 17
=> 27x + 18y chia hết cho 17
=> (27x +18y) - (17x + 17y) chia hết cho 17( vì 17 chia hết cho 17 nên 17x+17Y chia hết cho 17)
=> 10x + y chia hết cho 17
Vậy nếu 3x + 2y chia hết cho 17 thì 10x + y cũng chia hết cho 17 ( ĐPCM )
ta có :
3x + 2y chia hết cho 17
suy ra 9( 3x + 2y) chia hết cho 17
suy ra 27x + 18y chia hết cho 17
suy ra ( 27x + 18y ) - 9 17x + 17y) chia hết cho 17 ( vì 17 chia hết cho 17 nên 17x + 17y chia hết cho 17)
suy ra 10x + y chia hết cho 17
vậy nếu 3x + 2y chia hết cho 17 thùi 10x + y chũng chia hết cho 17
Ta có 3x + 2y chia hết cho 17
=> 9(3x+2y) chia hết cho 17
=> 27x + 18y chia hết cho 17
=> (27x +18y) - (17x + 17y) chia hết cho 17( vì 17 chia hết cho 17 nên 17x+17Y chia hết cho 17)
Học tốt !
Chứng minh rằng: Nếu 3x+5y chia hết cho 17 thì 4x+y chia hết cho 17
3x+5y chia hết cho 17
17x chia hết cho 17
=>3x+5y+17x chia hết cho 17
=>20x+5y chia hết cho 17
=>5.(4x+y) chia hết cho 17
mà 5 và 17 là 2 số nguyên tố cùng nhau
=>4x+y chia hết cho 17
=>đpcm
Cuộc đời bất công nên cọng lông không bao giờ thẳng
Đời bất bình đẳng nên đừng cố vuốt lại cọng lông
Chứng minh rằng: Nếu 5 x + 7y chia hết cho 17 thì 6 x + 5 y chia hết cho 17
Ta có 5 x +7y chia hết cho 17
suy ra (17x+17y)-(5x+7y)chia hết cho 17
suy ra (17x-5x)+(17y-7y) chia hết cho 17
suy ra 12x +10y chia hết cho 17
suy ra [(12x+10y) chia 2] chia hết cho 17
= 6x +5y chia hết cho 17
a) Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
b) Chứng minh rằng : Nếu 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17 (x, y thuoc N). Điều ngược lại có đúng không ?
Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng =)))
Chúc em học tốt !!!
Bài đâu thế , quen lắm nhưng nhớ không ra
Bài 1 Cho biết 3a+2bchi hết cho 17 ( a,b thuộc N ) . Chứng minh rằng 10a + b chia hết cho 17
Bài 2 Cho biết a - 5b chia hết cho 17 ( a,b thuộc N) Chứng minh rằng 10a + b chia hết cho 17
Bài 3 a) Chứng minh rằng Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N). Điều ngược lại có đúng ko?
b)Chứng minh rằng 2x + 3ychia hết cho 17 thì 9x + 5y chia hết cho 17 (x,y thuộc N). Điều ngược lại có đúng ko?