chứng minh không tồn tại hai số nguyên a,b thoả mãn a^3 = b^3 + 2019
Chứng minh rằng không tồn tại hai số nguyên a,b thoả mãn a³=b³+2013
Chứng minh rằng không tồn tại hai số nguyên a,b thoả mãn a³=b³+2013
chứng minh rằng không tồn tại hai số nguyên a và b thỏa mãn: a3+b3=2013
Lời giải:
$a^3+b^3=(a+b)^3-3ab(a+b)=2013$
$\Rightarrow (a+b)^3=3ab(a+b)+2013\vdots 3$
$\Rightarrow a+b\vdots 3$
$\Rightarrow (a+b)^3\vdots 27$ và $3ab(a+b)\vdots 9$
Do đó:
$2013=(a+b)^3-3ab(a+b)\vdots 9$
Điều này vô lý do $2013\not\vdots 9$
Vậy không tồn tại $a,b$ nguyên thỏa mãn đề.
Câu 1 : Tìm số dư khi chia :
A : (x^4 + y^4 ) : 8
B : (7.2^4 + 3 ) :8
Câu 2 : Chứng minh rằng không tồn tại bộ 3 số nguyên x , y , z thoả mãn x^4 + y^4 = 7.z^4 + 5
Chứng minh rằng không tồn tại hai số nguyên a, b thỏa mãn: a3 = b3 + 2013.
Mọi người giải giúp mình với nha! thanks you mọi người.
CMR không tồn tại số nguyên a,b thoả mãn (a+b√2)2 = 2012 + 2011√2
từ đề bài=> a2+2\(\sqrt{2}\)ab+2b2=2012-\(\sqrt{2}\). 2011
=>a2+2b2-2012 =-\(\sqrt{2}\) . (2011-2ab)
=>(a2+2b2-2012)2= 2(2011-2ab)2
=> (a2+2b2-2012)2≡0(mod2) mà 2 là số nguyên tố
=>a2+2b2-2012≡0(mod2)
=> (a2+2b2-2012)2≡0(mod4) (1)
ta có 2011-2ab là số lẻ vì 2ab chẵn=>(2011-2ab)2lẻ
=> 2(2011-2ab)2 chỉ chia hết cho 2 nhưng không chia hết cho 4 (2)
từ (1) và (2)=> (a2+2b2-2012)2= 2(2011-2ab)2 vô lí
Vậy không tồn tại số nguyên a,b thoả mãn (a+b√2)2 = 2012 + 2011√2
Chứng minh rằng: Không tồn tại hai số a, b \(\left(a,b\in N;a\ne b\right)\)thoả mãn đẳng thức: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\).
- Theo đề bài :
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)=) \(\left(b-a\right).\left(a-b\right)=ab\)
Mà vế trái sẽ mang dấu âm còn vế phải mang dấu dương
Mà số âm khác số dương
=)\(\left(b-a\right).\left(a-b\right)\ne ab\)
=) \(\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
=) Không tồng tại hai số a,b ( \(a,b\in N,a\ne b\)) thỏa mãn đẳng thức : \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=) Đpcm
Cho a,b,c thoả mãn (a+b+c)3=a3+b3+c3
Chứng minh: trong 3 số a,b,c tồn tại 2 số đối nhau
CMR: không tồn tại số nguyên tố a;b;c thoả mãn a^2=b^2+c^2