Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh
Xem chi tiết
Nhóc_Siêu Phàm
8 tháng 12 2017 lúc 15:28

Giải

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOy′xOy′^

nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)

mà (ˆxOyxOy^ + ˆxOy′xOy′^) =  180(2 góc kề bù)

=>  ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800   900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^,  ˆx′Oyx′Oy^  thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

Proed_Game_Toàn
8 tháng 12 2017 lúc 15:32

a) Vì Ot là phân giác của ˆxOyxOy^
nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^
Ot' là phân giác của ˆxOy′xOy′^
nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)
mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 180
0
(2 góc kề bù)
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212180
0 = 90
0
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông
b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo
bởi hai đường thẳng cắt nhau đó.

QTV
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 1 2018 lúc 15:01

Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông.

Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
19 tháng 4 2017 lúc 15:05

Hướng dẫn:

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOy′xOy′^

nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)

mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 1800 (2 góc kề bù)

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800 = 900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

Tuyết Nhi Melody
19 tháng 4 2017 lúc 15:05

a) Vì Ot là phân giác của xOy^

nên yOt^ = xOt^ = 12xOy^

Ot' là phân giác của xOy′^

nên xOt′^ = y′Ot′^ = 12xOy′^

=> xOt^ + xOt′^ = 12xOy^ + 12xOy′^ = 12(xOy^ +

Ngô Thành Chung
Xem chi tiết
bui hoang vu thanh
31 tháng 3 2018 lúc 13:44

Lời giải

Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

e) Từ các câu trên ta có nhận xét: tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' là các đường phân giác tạo bởi các góc của hai đường thẳng đó.

nguyễn hoàng lê thi
Xem chi tiết
Đoàn Thị Diễm My
13 tháng 4 2017 lúc 20:14

a) Vì Ot là phân giác của

nên = =

Ot' là phân giác của

nên = =

=> + = + = ( + )

mà ( + ) = 1800 (2 góc kề bù)

=> + = 1800 = 900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc , , , thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.



 

Tiểu Thư họ Nguyễn
13 tháng 4 2017 lúc 20:26

a) Vì Ot là phân giác của

nên = =

Ot' là phân giác của

nên = =

=> + = + = ( + )

mà ( + ) = 1800 (2 góc kề bù)

=> + = .1800 = 900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc , , , thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.




Giang
Xem chi tiết
Hiiiii~
2 tháng 4 2017 lúc 9:41

Bài này ở trong sgk đúng ko bạn? lolang

a) Vì Ot là phân giác của

nên = =

Ot' là phân giác của

nên = =

=> + = + = ( + )

mà ( + ) = 1800 (2 góc kề bù)

=> + = 1800 = 900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông.

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc , , , thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

Chúc bạn học tốt!ok

Xem thêm tại: http://loigiaihay.com/bai-33-trang-70-sgk-toan-lop-7-tap-2-c42a5657.html#ixzz4d3XWOosC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2019 lúc 11:29

– TH1: M ∈ Ot

Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

M ∈ Ot do Ot là phân giác của Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7 nên M cách đều hai tia Ox và Oy

⇒ M cách đều xx’, yy’.

Tương tự cho M thuộc tia đối của tia Ot.

- TH2: M ∈ Ot’

M ∈ Ot’ do Ot’ là phân giác của Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7 nên M cách đều hai tia Ox, Oy’

⇒ M cách đều xx’, yy’.

Tương tự cho M thuộc tia đối của tia Ot’.

Vậy với mọi M thuộc đường thẳng Ot hoặc đường thẳng Ot’, M cách đều xx’ và yy’.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2018 lúc 17:25

Ta có M luôn thuộc miền trong của một trong bốn góc:

Giải bài 33 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

Mà M cách đều xx’ và yy’ nên theo định lý 2 ta có:

+ Nếu M thuộc miền trong góc xOy ⇒ M thuộc tia Ot.

+ Nếu M thuộc miền trong góc xOy’ ⇒ M thuộc tia Ot’.

+ Nếu M thuộc miền trong góc y’Ox’ ⇒ M thuộc tia đối của tia Ot.

+ Nếu M thuộc miền trong góc x’Oy ⇒ M thuộc tia đối của tia Ot’ .