chứng minh với mọi n thuộc N* va m chẵn thì m^2^n-1chia hết 2^(n-2)
1) a, Chứng tỏ ràng :với mọi số tự nhiên n thuộc N thì n^2+n+1 chia hết cho 5
b,Chứng tỏ ràng :số a=9^11+1chia hết cho 2 và 5
c,Chứng tỏ ràng :tích n nhân (n+3)là số chãn với mọi n thuộc N
cmr với mọi n thuộc Z thì(n^2+n-1)^2-1chia hết cho 24
Xét : ( x-1 ).( x+1 )
= x^2 + x - x -1
= x^2 - 1
Có : x.(x^2 - 1)
= x.( x-1 ).( x+1 )
= ( x - 1 ).x.( x+1 )
Do x-1; x; x+1 là 2 số nguyên liên tiếp
=> ( x - 1 ).x.( x+1 ) chia hết cho 3
=> x.(x^2 - 1) chia hết cho 3
Vậy....
chứng minh với mọi n thuộc N* và m lẻ thì m^2^n -1 chia hết 2^(n+2)
chứng minh với mọi n thuộc N* và m chẵn thì m^2^n-1 chia hết 2^ (n+2)
c/m với mọi số nguyên n thì (n2+n-1) 2 -1chia hết cho 24
CMR với mọi n lớn hơn hoặc bằng 2 n thuộc N thì n2n- n2+ n- 1chia hết cho (n-1)2
Với mọi M, N thuộc số nguyên dương, tổng M2 + N2 chia hết cho 5 thì mọi số đều chia hết cho 5 ( chứng minh bằng phương pháp phản chứng)
B1: chứng minh với mọi n thuộc N thì:
n4 + 6n3 + 11n2 +6n chia hết cho 24
B2: chứng minh với mọi n chẵn nhỏ hơn 4 và n thuộc Z thì
n4 + 4n3 - 4n2 + 16n chia hết cho 384
B3: tìm x, y sao cho
a) x + 2y = xy + 2
b) xy = x + y
B1: Giải:
\(n^4+6n^3+11n^2+6n\)
= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)
= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)
= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)
= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)
= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)
= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)
= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)
Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.
Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)
Chứng minh rằng với mọi n thuộc N :
a, n2 +4n +3 chia hết cho 8
b, n3+3n2-n-3 chia hết cho 48
c, n12-n8-n4+1chia hết cho 512
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
1/ Chứng minh rằng với mọi n thuộc N thì 50n + 25 chia hết cho 25 nhưng ko chia hết cho 50
2/ Chứng minh rằng 5 số chẵn liên tiếp thì chia hết cho 10
3/ Tìm n thuộc N
n + 3 chia hết cho n
3n + 3 chia hết cho n
27 - 5n chia hết cho n