tìm các số nguyên tố thỏa mãn: x^2+y^2+z^2<xy+3y+2z
Tìm các số nguyên tố x,y,z thỏa mãn:
(x+y)(xy+1)=2^y
Tìm tất cả các số nguyên tố x,y,z thỏa mãn: (x+1)(y+2)(z+3)=4xyz MONG MỌI NGƯỜI GIÚP ĐỠ
Đặt �=�+1,�=�+2,�=�+3, bài toán trở thành:
���=4(�−1)(�−2)(�−3)
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
tìm 3 số nguyên tố (x,y,z) thỏa mãn (x+y)(xy+1)=2^z
Tìm ba số nguyên tố liên tiếp x,y,z ( với x < y < z) thỏa mãn số C = x2+y2+z2 là một số nguyên tố.
:Tìm các số nguyên x, y thỏa mãn: x^4+x^2-y^2+y+10 .Choa,b,c là các số nguyên dương ,nguyên tố cùng nhau và thỏa mãn
Tìm tất cả các số nguyên dương x,y,z thỏa mãn : \(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên tố
tìm các số nguyên duowgn x,y,z thỏa mãn hai điều kiện sau \(x^2+y^2+z^2\)là số nguyên tố và \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}\)là số hữu tỉ
Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)
\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)
Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
Vì \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa)
Kết luận...