A, B, C, D là những số có hai chữ số.
A . B = 665.
C . D = 476.
B .C = 595.
Tính A2 + B2 + C2 + D2
A,B,C,D là những số có hai chữ số
A.B=665
C.D=476
B.C=595
Tính A2+B2+C2+D2
chú ý : A2 là A mũ 2 nha , mấy cái khác cũng vậy
1/A,B,C,D là những số có hai chữ số.
A*B=665
C*D=476
B*C=595
Tính A^2+B^2+C^2+D^2
A, B, C, D là những số có hai chữ số.
A . B = 665.
C . D = 476.
B .C = 595.
Tính A2 + B2 + C2 + D2
1/ A, B, D là những số có 2 chữ số.
A x B= 665
C x D= 476
B x C= 595
Tính: A2 + B2+ C2+ D2
A, B, C, D là những số có hai chữ số.
A. B = 665.
C. D = 476.
Tính A2 + B2 + C2 + D2
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
Một hình hộp chữ nhật có ba kích thước lần lượt là a, b, c. Gọi (S) là mặt cầu đi qua 8 đỉnh của hình hộp chữ nhật đó. Diện tích của mặt cầu (S) theo a, b, c là:
A. π ( a 2 + b 2 + c 2 ) B. 2 π ( a 2 + b 2 + c 2 )
C. 4 π ( a 2 + b 2 + c 2 ) D. π /2.( a 2 + b 2 + c 2 )
Chọn A.
Đường kính của mặt cầu (S) chính là đường chéo của hình hộp chữ nhật, nên mặt cầu (S) có bán kính
Do đó diện tích mặt cầu (S) là: S = 4 πr 2 = π( a 2 + b 2 + c 2 )
Tìm a,b,c,d thỏa mãn
a2+b2+c2+d2+1=a×(b+c+d+1)
\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2