Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Thư Thiên Bình Dễ T...
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Nguyễn Hoàng Tèo
Xem chi tiết
Nguyễn Thị Nga
Xem chi tiết
Phạm Ngọc Uyên
Xem chi tiết
Thành Trần Xuân
7 tháng 4 2019 lúc 17:03

Đặt A là số cần tìm. Ta có: A= 5m^5 = 3.n^3 = 2.p^2

Như vậy A có các ước nguyên tố 5,3,2. Mà A là số bé nhất thỏa mãn nên ta có A = 5^a.3^b.2^c

Xét nhân tử 5^a, vì A/3=n^3, A/2=p^2 nên n^3,p^2 chứa nhân tử 5^a=> a phải chia hết cho 2,3 

Mặt khác A=5.m^5 nên a chia 5 dư 1 => a nhỏ nhất là 6

Tương tự ta có b chia hết cho 2,5, chia 3 dư 1 nên b nhỏ nhất là 10

c chia hết cho 5,3 chia 2 dư 1 nên c nhỏ nhất là 15

Vậy A nhỏ nhất là 5^6.3^10.2^15. Thử lại thỏa mãn.

Fucking bitch
4 tháng 6 2020 lúc 22:09

Vậy là kết quả ra bn. Mik vẫn chưa hiểu

Khách vãng lai đã xóa
Nữ Thần Lạnh Lùng
Xem chi tiết
VuiLaChinh
28 tháng 2 2017 lúc 21:32

Gọi số cần tìm là a

1/3a = b3

b3 nhỏ nhất bằng 1

Nên a nhỏ = 3

Nguyễn Anh Kim Hân
Xem chi tiết
Trần Thúc Minh Trí
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Linh Chi
30 tháng 5 2020 lúc 8:58

TH1) Với n = 6k

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6 

=> Loại 

TH2) Với n = 6k+1 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)

=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương 

Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1 

=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương 

+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp

+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương 

=> k \(\equiv\)0 ( mod 8) => k = 8h

=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)

+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương 

+) Với h \(\equiv\)1  (mod 7 ) => 32h + 1 không là số cp 

=> h \(\equiv\)0; 2; 5 (mod 7 ) 

=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7  ( với m;n; t nguyên dương )

Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất 

=> n = 6k + 1 và k = 8h = 56 

=> n = 337

=> A = 38025 là số chính phương

TH3) Với n = 6k + 2 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6

TH4) Với n = 6k + 3

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6 

TH5) Với n = 6k + 4 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6

TH6) Với n = 6k + 5 

ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)

=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)

mà ( k + 1; 12k + 11 ) = 1 

=> k + 1 và 12k + 11 là 2 số chính phương 

tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11 

=> Trường hợp này loại 

Vậy  n = 337 

Khách vãng lai đã xóa