Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mạnh Tạ Đức
Xem chi tiết
tạ hữu nguyên
30 tháng 3 2017 lúc 17:47

cho mk một tk đi bà con ơi

ủng hộ mk đi làm ơn

Lawless
Xem chi tiết
okokok
Xem chi tiết
Trần Đình Thuyên
28 tháng 7 2017 lúc 19:29

theo cô-si ta có

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

nhân vế với vế ta có

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}\times2\sqrt{yz}\times2\sqrt{xz}\)

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{x^2y^2z^2}=8xyz\)

mà xyz=2            suy ra

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\times2=16\)

vậy GTNN của A=16

uzumaki naruto
28 tháng 7 2017 lúc 19:29

Ta có: x+y + z = 0 => x = -y-z (1) ; y= -x-z (2); z = -y-x (3)

Thay (1); (2); (3) vào A = (x+y)(y+z)(x+z), có:

A = (-y-z+y)(-x-z+z)(x - y - x) = (-z)(-x)(-y) = -(xyz) = -2 

Vậy khi xyz = 2 và x+y+z = 0 thì giá trị biểu thức  A = (x+y)(y+z)(x+z) là -2

lili
3 tháng 4 2020 lúc 23:31

Thuyên lm sai r đây là tính giá trị mà có phải tìm min đâu ??

Khách vãng lai đã xóa
Đỗ Nguyễn Hiền Thảo
Xem chi tiết
gojo satouru
Xem chi tiết
Whisper Natural
Xem chi tiết
Hoàng Đức Khải
13 tháng 12 2017 lúc 18:58

Tiếp tục:\(-A=\frac{x^3+y^3+z^3}{2xyz}\)

thay(1) vào A ta có

\(-A=\frac{y^3+z^3-\left(y+z\right)^3}{2xyz}=\frac{y^3+z^3-y^3-z^3-3yz\left(y+z\right)}{2xyz}\)

\(-A=\frac{3xyz}{2xyz}=\frac{3}{2}\Rightarrow A=\frac{-3}{2}\)

P/s tham khảo bài mình nhé nhớ

Hoàng Đức Khải
13 tháng 12 2017 lúc 18:52

ta có:\(x+y+z=0\) \(\Rightarrow x=-\left(y+z\right)\)

\(\Rightarrow x^3=-\left(y+z\right)^3\left(1\right)\)\(;x^2=\left(y+z\right)^2\)

\(\Rightarrow y^2+z^2-x^2=-2yz\)

CMTT:\(z^2+x^2-y^2=-2xz;x^2+y^2-z^2=-2xy\)

thay vào A ta có:

\(A=\frac{-x^2}{2yz}+\frac{-y^2}{2xz}+\frac{-z^2}{2xy}\)

Đỗ Xuân Tuấn Minh
Xem chi tiết
Freez Dora
Xem chi tiết
Chau Ngoc Nam
Xem chi tiết
Thiên An
3 tháng 7 2017 lúc 11:30

Vì x+y+z=0

=>  \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

Ta có  \(A=\frac{x}{y+z-x}+\frac{y}{x+z-y}+\frac{z}{x+y-z}\)

\(=\frac{x}{-x-x}+\frac{y}{-y-y}+\frac{z}{-z-z}=\frac{x}{-2x}+\frac{y}{-2y}+\frac{z}{-2z}\)

\(=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}=\frac{-3}{2}\)