Cho hai số hữu tỷ \(\frac{a}{b}\)và \(\frac{c}{d}\)( b,d > 0 ).Chứng minh rằng: \(\frac{a}{b}\)< \(\frac{c}{d}\) thì \(\frac{a}{b}\)< \(\frac{a+c}{b+d}\)< \(\frac{c}{d}\)
Cho các số hữu tỉ : \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{a+c}{b+d}\)(a,b,c,d thuộc Z ;b>0 ;d>0 ). Chứng minh rằng;nếu x<y thì x<z<y
Bài.1.Cho 2 số hữu tỉ\(\frac{a}{b}\)và\(\frac{c}{d}\)(b>0,d>0) chứng tỏ rằng
a)Nếu\(\frac{a}{b}\)<\(\frac{c}{d}\) thì a,d<b,c
b)Nếu a,d<b,c thì\(\frac{a}{b}\)<\(\frac{c}{d}\)
Bài.2.Chứng tỏ rằng nếu \(\frac{a}{b}\)<\(\frac{c}{d}\)(b>0,d>0)
Thì \(\frac{a}{b}\)<\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
a) phải là a.d<b.c
chứ ko phải a,d<b,c đâu
cho 2 số hữu tỉ a/b và b/c với b>0 và d>0. chứng minh rằng a/b < b/c <=> ad<bc
1. Chứng minh rằng: \(\sqrt[3]{a^3+b^3+c^3}\le\sqrt{a^2+b^2+c^2}\)
2. Cho a,b,c là các số hữu tỉ. Chứng minh rằng: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\) là 1 số hữu tỉ
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
B1.Cho hai số hữu tỉ a/b và c/d (b>0;d>0) chứng tỏ rằng:
Nếu a/b > c/d thì ad < bc
Nếu ad < bc thì a/b < c/d
B2.
a) chứng tỏ rằng nếu a/b < c/d (b>0;d>0) thì a/b < a+c/b+d < c/d
b) hãy viết bốn số hữu tỉ xen giữa -1/2 và -1/3
a) chứng tỏ rằng nếu \(\frac{a}{b}\)<\(\frac{c}{d}\) ( b > 0, d > 0 ) thì \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\).
b) hãy viết ba số hữu tỉ xen giữa \(\frac{-1}{3}\) và \(\frac{-1}{4}\)
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ âm nếu a và b khác dấu.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b khác dấu thì a < 0 và b > 0.
Suy ra (a/b) < (0/b) = 0 tức là a/b âm.
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ dương nếu a và b cùng dấu.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b cùng dấu thì a > 0 và b > 0.
Suy ra (a/b) > (0/b) = 0 tức là a/b dương.
Câu 1: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).
Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).
Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).
Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:
\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).
Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:
\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).
Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:
\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).
Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:
\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).